Full metadata record

DC Field Value Language
dc.contributor.authorMehmood, Asad-
dc.contributor.authorAli, Basit-
dc.contributor.authorGong, Mengjun-
dc.contributor.authorKim, Min Gyu-
dc.contributor.authorKim, Ji-Young-
dc.contributor.authorBae, Jee Hwan-
dc.contributor.authorKucernak, Anthony-
dc.contributor.authorKang, Yong-Mook-
dc.contributor.authorNam, Kyung-Wan-
dc.date.accessioned2024-01-19T14:02:17Z-
dc.date.available2024-01-19T14:02:17Z-
dc.date.created2021-09-04-
dc.date.issued2021-08-
dc.identifier.issn0021-9797-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116587-
dc.description.abstractNitrogen-doped porous carbons containing atomically dispersed iron are prime candidates for substituting platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells. These carbon catalysts are classically synthesized via complicated routes involving multiple heat-treatment steps to form the desired Fe-Nx sites. We herein developed a highly active Fe-N-C catalyst comprising of exclusive FeNx sites by a simplified solid-state synthesis protocol involving only a single heat-treatment. Imidazole is pyrolyzed in the presence of an inorganic salt-melt resulting in highly porous carbon sheets decorated with abundant Fe-Nx centers, which yielded a high density of electrochemically accessible active sites (1.36 x 1019 sites g-1) as determined by the in situ nitrite stripping technique. The optimized catalyst delivered a remarkable ORR activity with a half-wave potential (E1/2) of 0.905 VRHE in alkaline electrolyte surpassing the benchmark Pt catalyst by 55 mV. In acidic electrolyte, an E1/2 of 0.760 VRHE is achieved at a low loading level (0.29 mg cm-2). In PEMFC tests, a current density of 2.3 mA cm-2 is achieved at 0.90 ViR-free under H2-O2 conditions, reflecting high kinetic activity of the optimized catalyst. (c) 2021 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleDevelopment of a highly active Fe-N-C catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes-
dc.typeArticle-
dc.identifier.doi10.1016/j.jcis.2021.03.081-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF COLLOID AND INTERFACE SCIENCE, v.596, pp.148 - 157-
dc.citation.titleJOURNAL OF COLLOID AND INTERFACE SCIENCE-
dc.citation.volume596-
dc.citation.startPage148-
dc.citation.endPage157-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000645630200002-
dc.identifier.scopusid2-s2.0-85103795888-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusMETAL ELECTROCATALYST-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPOLYANILINE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusMELAMINE-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusFE/N/C-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorNon-precious metal catalysts-
dc.subject.keywordAuthorFe-N-C-
dc.subject.keywordAuthorFuel cells-
dc.subject.keywordAuthorOxygen reduction reaction-
dc.subject.keywordAuthorSite density-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE