Synthesis, morphology, characterisation, and ethanol gas sensing of hierarchical flower-like Co-doped WO3 nanoplates by solvothermal route

Authors
Lim, Jong-ChanJin, ChanghyunChoi, Myung SikKim, Min YoungKim, Sang-ilChoi, Soon-MokBaek, Seung-HyubLee, Kyu HyoungKim, Hyun-Sik
Issue Date
2021-08-01
Publisher
ELSEVIER SCI LTD
Citation
CERAMICS INTERNATIONAL, v.47, no.15, pp.20956 - 20964
Abstract
Three-dimensional flower-like tungsten oxide nanoplates sequentially doped with Co at different concentrations were fabricated using a single solvothermal process. The response of the nanostructure of the n-type tungsten oxide used for sensing ethanol gas, which is a reducing gas, changed sequentially according to the process temperature and doping concentration of Co. This response cannot be attributed to a single reason, but it can be regarded as a result of the combination of several complicated direct and indirect phenomena such as (1) point, line, and cross-section defects on the surface, (2) change in initial resistance corresponding to doping concentration, (3) catalytic effect of dopant, and (4) difference in energy level at heterojunctions. Therefore, unlike in the case of other gas sensing methods that depend on a main cause or mechanism, it might be meaningful in the case of ethanol gas sensing to analyse each cause and predict the results of different combinations.
Keywords
SEMICONDUCTING METAL-OXIDES; ORGANIC-COMPOUNDS VOCS; SCHOTTKY-JUNCTION; SENSORS; GRAPHENE; NANOSTRUCTURES; PLATINUM; FILMS; MOS2; XPS; SEMICONDUCTING METAL-OXIDES; ORGANIC-COMPOUNDS VOCS; SCHOTTKY-JUNCTION; SENSORS; GRAPHENE; NANOSTRUCTURES; PLATINUM; FILMS; MOS2; XPS; Solvothermal method; Semiconducting metal oxides; Doping; Hetero-nanostructures; Gas sensors
ISSN
0272-8842
URI
https://pubs.kist.re.kr/handle/201004/116598
DOI
10.1016/j.ceramint.2021.04.095
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE