Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Doo San-
dc.contributor.authorKim, Dae Won-
dc.contributor.authorLee, Jung-Hoon-
dc.contributor.authorChae, Yun Seok-
dc.contributor.authorKang, Dong Won-
dc.contributor.authorHong, Chang Seop-
dc.date.accessioned2024-01-19T14:02:38Z-
dc.date.available2024-01-19T14:02:38Z-
dc.date.created2022-01-25-
dc.date.issued2021-08-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116608-
dc.description.abstractDiamine-appended metal-organic frameworks (MOFs) exhibit exceptional CO2 adsorption capacities over a wide pressure range because of the strong interaction between basic amine groups and acidic CO2. Given that their high CO2 working capacity is governed by solvent used during amine functionalization, a systematic investigation on solvent effect is essential but not yet demonstrated. Herein, we report a facile one-step solvent exchange route for the diamine functionalization of MOFs with open metal sites, using an efficient method to maximize diamine loading. We employed an MOF, Mg-2(dobpdc) (dobpdc(4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate), which contains high-density open metal sites. Indirect grafting with N-ethylethylenediamine (een) was performed with a minimal amount of methanol (MeOH) via multiple MeOH exchanges and diamine functionalization, resulting in a top-tier CO2 adsorption capacity of 16.5 wt %. We established the correlation between N,N- dimethylformamide (DMF) loading and infrared peaks, which provides a simple method for determining the amount of the remaining DMF in Mg-2 (dobpdc). All interactions among Mg, DMF, diamine, and solvent were analyzed by van der Waals (vdw)- corrected density functional theory (DFT) calculations to elucidate the effect of chemical potential on diamine grafting.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleDiamine Functionalization of a Metal-Organic Framework by Exploiting Solvent Polarity for Enhanced CO2 Adsorption-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.1c10659-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.13, no.32, pp.38358 - 38364-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume13-
dc.citation.number32-
dc.citation.startPage38358-
dc.citation.endPage38364-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000687172000040-
dc.identifier.scopusid2-s2.0-85113315758-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE CAPTURE-
dc.subject.keywordPlusFLUE-GAS-
dc.subject.keywordPlusADSORBENTS-
dc.subject.keywordPlusALKYLAMINE-
dc.subject.keywordPlusVARIANTS-
dc.subject.keywordPlusAIR-
dc.subject.keywordAuthormetal-organic frameworks-
dc.subject.keywordAuthorsolvent exchange-
dc.subject.keywordAuthordiamine functionalization-
dc.subject.keywordAuthorcarbon dioxide capture-
dc.subject.keywordAuthorsolvent polarity-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE