Full metadata record

DC Field Value Language
dc.contributor.authorYi, Hojoon-
dc.contributor.authorBahng, Jaeuk-
dc.contributor.authorPark, Sehwan-
dc.contributor.authorDang, Dang Xuan-
dc.contributor.authorSakong, Wonkil-
dc.contributor.authorKang, Seungsu-
dc.contributor.authorAhn, Byung-wook-
dc.contributor.authorKim, Jungwon-
dc.contributor.authorKim, Ki Kang-
dc.contributor.authorLim, Jong Tae-
dc.contributor.authorLim, Seong Chu-
dc.date.accessioned2024-01-19T14:03:23Z-
dc.date.available2024-01-19T14:03:23Z-
dc.date.created2021-10-21-
dc.date.issued2021-08-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116657-
dc.description.abstractThe 1D wire TaS3 exhibits metallic behavior at room temperature but changes into a semiconductor below the Peierls transition temperature (T-p), near 210 K. Using the 3 omega method, we measured the thermal conductivity kappa of TaS3 as a function of temperature. Electrons dominate the heat conduction of a metal. The Wiedemann-Franz law states that the thermal conductivity kappa of a metal is proportional to the electrical conductivity sigma with a proportional coefficient of L-0, known as the Lorenz number-that is, kappa = sigma LoT. Our characterization of the thermal conductivity of metallic TaS3 reveals that, at a given temperature T, the thermal conductivity kappa is much higher than the value estimated in the Wiedemann-Franz (W-F) law. The thermal conductivity of metallic TaS3 was approximately 12 times larger than predicted by W-F law, implying L=12L(0). This result implies the possibility of an existing heat conduction path that the Sommerfeld theory cannot account for.-
dc.languageEnglish-
dc.publisherMDPI Open Access Publishing-
dc.titleEnhanced Electron Heat Conduction in TaS3 1D Metal Wire-
dc.typeArticle-
dc.identifier.doi10.3390/ma14164477-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials, v.14, no.16-
dc.citation.titleMaterials-
dc.citation.volume14-
dc.citation.number16-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000689465200001-
dc.identifier.scopusid2-s2.0-85113714686-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHARGE-DENSITY-WAVE-
dc.subject.keywordPlusTHERMAL-CONDUCTIVITY-
dc.subject.keywordPlusNONLINEAR CONDUCTIVITY-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorPeierls transition-
dc.subject.keywordAuthorcharge density wave-
dc.subject.keywordAuthorheat conduction-
dc.subject.keywordAuthorWiedemann-Franz law-
dc.subject.keywordAuthorLorenz number-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE