Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, J. | - |
dc.contributor.author | Nam, K.B. | - |
dc.contributor.author | Ha, H.P. | - |
dc.date.accessioned | 2024-01-19T14:03:31Z | - |
dc.date.available | 2024-01-19T14:03:31Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2021-08 | - |
dc.identifier.issn | 0304-3894 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116666 | - |
dc.description.abstract | TiO2-supported antimony oxide-vanadium oxide-cerium oxide (SVC) imparts Lewis acidic (L)/Br?nsted acidic (B) sites, labile (Oα)/mobile oxygens (OM), and oxygen vacancies (OV) for selective catalytic NOX reduction (SCR). However, these species are harmonious occasionally, readily poisoned by H2O/sulfur/phosphorus/carbon, thus limiting SCR performance of SVC. Herein, a synthetic means is reported for immobilizing HSOA-/SOA2- (A= 3?4) or H3?BPO4B- (B= 1?3) on the L sites of SVC to form SVC-S and SVC-P. HSOA-/SOA2-/H3?BPO4B- acted as additional B sites with distinct characteristics, altered the properties of Oα/OM/OV species, thereby affecting the SCR activities and performance of SVC-S and SVC-P. SVC-P activated Langmuir-Hinshelwood-typed SCR better than SVC-S, as demonstrated by a greater Oα-directed pre-factor and smaller binding energy between Oα and NO. Meanwhile, SVC-S provided a larger B-directed pre-factor, thereby outperforming SVC-P in activating Eley-Rideal-typed SCR that dictated the overall SCR activities. Compared with SVC-S, SVC-P contained fewer OV species, yet, had higher OM mobility, thus enhancing the overall redox cycling feature, while providing greater Br?nsted acidity. Consequently, the resistance of SVC-P to H2O or soot were greater than or similar to that of SVC-S. Conversely, SVC-S revealed greater tolerance to hydro-thermal aging and SO2 than SVC-P. This study highlights the pros and cons of HSOA-/SOA2-/H3?BPO4B- functionalities in tailoring the properties of metal oxides in use as SCR catalysts. ? 2021 The Authors | - |
dc.language | English | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Comparative study of HSOA-/SOA2- versus H3-BPO4B- functionalities anchored on TiO2-supported antimony oxide-vanadium oxide-cerium oxide composites for low-temperature NOX activation | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jhazmat.2021.125780 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Journal of Hazardous Materials, v.416 | - |
dc.citation.title | Journal of Hazardous Materials | - |
dc.citation.volume | 416 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000664795200003 | - |
dc.identifier.scopusid | 2-s2.0-85104086742 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | Antimony compounds | - |
dc.subject.keywordPlus | Binding energy | - |
dc.subject.keywordPlus | Nitrogen oxides | - |
dc.subject.keywordPlus | Reduction | - |
dc.subject.keywordPlus | Temperature | - |
dc.subject.keywordPlus | Thermal aging | - |
dc.subject.keywordPlus | Titanium dioxide | - |
dc.subject.keywordPlus | Antimony oxides | - |
dc.subject.keywordPlus | Cerium oxides | - |
dc.subject.keywordPlus | Energy | - |
dc.subject.keywordPlus | H3?BPO4B- functionality | - |
dc.subject.keywordPlus | HSOA-/SOA2- functionality | - |
dc.subject.keywordPlus | NOX consumption rate | - |
dc.subject.keywordPlus | Pre-factor | - |
dc.subject.keywordPlus | Selective catalytic NOX reduction | - |
dc.subject.keywordPlus | TiO$-2$ | - |
dc.subject.keywordPlus | Vanadium oxides | - |
dc.subject.keywordPlus | Activation energy | - |
dc.subject.keywordPlus | antimony | - |
dc.subject.keywordPlus | cerium oxide | - |
dc.subject.keywordPlus | metal oxide | - |
dc.subject.keywordPlus | nitric oxide | - |
dc.subject.keywordPlus | titanium dioxide | - |
dc.subject.keywordPlus | vanadium | - |
dc.subject.keywordPlus | antimony | - |
dc.subject.keywordPlus | catalysis | - |
dc.subject.keywordPlus | catalyst | - |
dc.subject.keywordPlus | comparative study | - |
dc.subject.keywordPlus | composite | - |
dc.subject.keywordPlus | hydrothermal system | - |
dc.subject.keywordPlus | performance assessment | - |
dc.subject.keywordPlus | soot | - |
dc.subject.keywordPlus | Article | - |
dc.subject.keywordPlus | bulk density | - |
dc.subject.keywordPlus | catalyst | - |
dc.subject.keywordPlus | comparative study | - |
dc.subject.keywordPlus | controlled study | - |
dc.subject.keywordPlus | diffuse reflectance infrared Fourier transform spectroscopy | - |
dc.subject.keywordPlus | flow rate | - |
dc.subject.keywordPlus | ion chromatography | - |
dc.subject.keywordPlus | kinetic parameters | - |
dc.subject.keywordPlus | Langmuir Blodgett film | - |
dc.subject.keywordPlus | low temperature | - |
dc.subject.keywordPlus | particle size | - |
dc.subject.keywordPlus | pore volume | - |
dc.subject.keywordPlus | retention time | - |
dc.subject.keywordPlus | stereospecificity | - |
dc.subject.keywordPlus | surface area | - |
dc.subject.keywordPlus | surface property | - |
dc.subject.keywordPlus | synthesis | - |
dc.subject.keywordPlus | thermal conductivity | - |
dc.subject.keywordPlus | transmission electron microscopy | - |
dc.subject.keywordPlus | X ray diffraction | - |
dc.subject.keywordPlus | X ray fluorescence | - |
dc.subject.keywordAuthor | Activation energy | - |
dc.subject.keywordAuthor | H3?BPO4B- functionality | - |
dc.subject.keywordAuthor | HSOA-/SOA2- functionality | - |
dc.subject.keywordAuthor | NOX consumption rate | - |
dc.subject.keywordAuthor | Pre-factor | - |
dc.subject.keywordAuthor | Selective catalytic NOX reduction | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.