Full metadata record

DC Field Value Language
dc.contributor.authorKim, J.-
dc.contributor.authorNam, K.B.-
dc.contributor.authorHa, H.P.-
dc.date.accessioned2024-01-19T14:03:31Z-
dc.date.available2024-01-19T14:03:31Z-
dc.date.created2021-09-02-
dc.date.issued2021-08-
dc.identifier.issn0304-3894-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116666-
dc.description.abstractTiO2-supported antimony oxide-vanadium oxide-cerium oxide (SVC) imparts Lewis acidic (L)/Br?nsted acidic (B) sites, labile (Oα)/mobile oxygens (OM), and oxygen vacancies (OV) for selective catalytic NOX reduction (SCR). However, these species are harmonious occasionally, readily poisoned by H2O/sulfur/phosphorus/carbon, thus limiting SCR performance of SVC. Herein, a synthetic means is reported for immobilizing HSOA-/SOA2- (A= 3?4) or H3?BPO4B- (B= 1?3) on the L sites of SVC to form SVC-S and SVC-P. HSOA-/SOA2-/H3?BPO4B- acted as additional B sites with distinct characteristics, altered the properties of Oα/OM/OV species, thereby affecting the SCR activities and performance of SVC-S and SVC-P. SVC-P activated Langmuir-Hinshelwood-typed SCR better than SVC-S, as demonstrated by a greater Oα-directed pre-factor and smaller binding energy between Oα and NO. Meanwhile, SVC-S provided a larger B-directed pre-factor, thereby outperforming SVC-P in activating Eley-Rideal-typed SCR that dictated the overall SCR activities. Compared with SVC-S, SVC-P contained fewer OV species, yet, had higher OM mobility, thus enhancing the overall redox cycling feature, while providing greater Br?nsted acidity. Consequently, the resistance of SVC-P to H2O or soot were greater than or similar to that of SVC-S. Conversely, SVC-S revealed greater tolerance to hydro-thermal aging and SO2 than SVC-P. This study highlights the pros and cons of HSOA-/SOA2-/H3?BPO4B- functionalities in tailoring the properties of metal oxides in use as SCR catalysts. ? 2021 The Authors-
dc.languageEnglish-
dc.publisherElsevier B.V.-
dc.titleComparative study of HSOA-/SOA2- versus H3-BPO4B- functionalities anchored on TiO2-supported antimony oxide-vanadium oxide-cerium oxide composites for low-temperature NOX activation-
dc.typeArticle-
dc.identifier.doi10.1016/j.jhazmat.2021.125780-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Hazardous Materials, v.416-
dc.citation.titleJournal of Hazardous Materials-
dc.citation.volume416-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000664795200003-
dc.identifier.scopusid2-s2.0-85104086742-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusAntimony compounds-
dc.subject.keywordPlusBinding energy-
dc.subject.keywordPlusNitrogen oxides-
dc.subject.keywordPlusReduction-
dc.subject.keywordPlusTemperature-
dc.subject.keywordPlusThermal aging-
dc.subject.keywordPlusTitanium dioxide-
dc.subject.keywordPlusAntimony oxides-
dc.subject.keywordPlusCerium oxides-
dc.subject.keywordPlusEnergy-
dc.subject.keywordPlusH3?BPO4B- functionality-
dc.subject.keywordPlusHSOA-/SOA2- functionality-
dc.subject.keywordPlusNOX consumption rate-
dc.subject.keywordPlusPre-factor-
dc.subject.keywordPlusSelective catalytic NOX reduction-
dc.subject.keywordPlusTiO$-2$-
dc.subject.keywordPlusVanadium oxides-
dc.subject.keywordPlusActivation energy-
dc.subject.keywordPlusantimony-
dc.subject.keywordPluscerium oxide-
dc.subject.keywordPlusmetal oxide-
dc.subject.keywordPlusnitric oxide-
dc.subject.keywordPlustitanium dioxide-
dc.subject.keywordPlusvanadium-
dc.subject.keywordPlusantimony-
dc.subject.keywordPluscatalysis-
dc.subject.keywordPluscatalyst-
dc.subject.keywordPluscomparative study-
dc.subject.keywordPluscomposite-
dc.subject.keywordPlushydrothermal system-
dc.subject.keywordPlusperformance assessment-
dc.subject.keywordPlussoot-
dc.subject.keywordPlusArticle-
dc.subject.keywordPlusbulk density-
dc.subject.keywordPluscatalyst-
dc.subject.keywordPluscomparative study-
dc.subject.keywordPluscontrolled study-
dc.subject.keywordPlusdiffuse reflectance infrared Fourier transform spectroscopy-
dc.subject.keywordPlusflow rate-
dc.subject.keywordPlusion chromatography-
dc.subject.keywordPluskinetic parameters-
dc.subject.keywordPlusLangmuir Blodgett film-
dc.subject.keywordPluslow temperature-
dc.subject.keywordPlusparticle size-
dc.subject.keywordPluspore volume-
dc.subject.keywordPlusretention time-
dc.subject.keywordPlusstereospecificity-
dc.subject.keywordPlussurface area-
dc.subject.keywordPlussurface property-
dc.subject.keywordPlussynthesis-
dc.subject.keywordPlusthermal conductivity-
dc.subject.keywordPlustransmission electron microscopy-
dc.subject.keywordPlusX ray diffraction-
dc.subject.keywordPlusX ray fluorescence-
dc.subject.keywordAuthorActivation energy-
dc.subject.keywordAuthorH3?BPO4B- functionality-
dc.subject.keywordAuthorHSOA-/SOA2- functionality-
dc.subject.keywordAuthorNOX consumption rate-
dc.subject.keywordAuthorPre-factor-
dc.subject.keywordAuthorSelective catalytic NOX reduction-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE