Full metadata record

DC Field Value Language
dc.contributor.authorVila, Maria-
dc.contributor.authorHong, Seungki-
dc.contributor.authorPark, Seunggyu-
dc.contributor.authorMikhalchan, Anastasiia-
dc.contributor.authorKu, Bon-Cheol-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorVilatela, Juan J.-
dc.date.accessioned2024-01-19T14:03:45Z-
dc.date.available2024-01-19T14:03:45Z-
dc.date.created2021-10-21-
dc.date.issued2021-07-23-
dc.identifier.issn2574-0970-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116681-
dc.description.abstractCarbon nanotubes (CNTs) of a sufficiently large diameter and a few layers self-collapse into flat ribbons at atmospheric pressure, forming bundles of stacked CNTs that maximize packing, and thus CNT interaction. Their improved stress transfer by shear makes collapsed CNTs ideal building blocks in macroscopic fibers of CNTs with high-performance longitudinal properties, particularly high tensile properties as reinforcing fibers. This work introduces cross-sectional transmission electron microscopy of focused ion beam-milled samples as a method to univocally identify collapsed CNTs and to determine the full population of different CNTs in macroscopic fibers produced by spinning from floating catalyst chemical vapor deposition. We show that close proximity in bundles is a major driver for collapse and that CNT "stoutness" (the number of layers/diameter), which dominates the collapse onset, is controlled by the growth promotor. Despite differences in the decomposition route, different carbon precursors lead to similar distributions of the ratio layers/diameter. The synthesis conditions in this study give a maximum fraction of collapsed CNTs of 70% when using selenium as the promotor, corresponding to an average of 0.25 layer/nm.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCHEMICAL-VAPOR-DEPOSITION-
dc.subjectSINGLE-WALL-
dc.subjectELECTRON-DIFFRACTION-
dc.subjectENHANCEMENT-
dc.subjectFRICTION-
dc.subjectBUNDLES-
dc.subjectBAND-
dc.titleIdentification of Collapsed Carbon Nanotubes in High-Strength Fibers Spun from Compositionally Polydisperse Aerogels-
dc.typeArticle-
dc.identifier.doi10.1021/acsanm.1c00969-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS APPLIED NANO MATERIALS, v.4, no.7, pp.6947 - 6955-
dc.citation.titleACS APPLIED NANO MATERIALS-
dc.citation.volume4-
dc.citation.number7-
dc.citation.startPage6947-
dc.citation.endPage6955-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000677582900045-
dc.identifier.scopusid2-s2.0-85110938901-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHEMICAL-VAPOR-DEPOSITION-
dc.subject.keywordPlusSINGLE-WALL-
dc.subject.keywordPlusELECTRON-DIFFRACTION-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusFRICTION-
dc.subject.keywordPlusBUNDLES-
dc.subject.keywordPlusBAND-
dc.subject.keywordAuthorcollapsed carbon nanotubes-
dc.subject.keywordAuthordiameter distribution-
dc.subject.keywordAuthoreccentricity-
dc.subject.keywordAuthorcarbon nanotube fibers-
dc.subject.keywordAuthortransversal TEM analysis-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE