Full metadata record

DC Field Value Language
dc.contributor.authorShin, Jisu-
dc.contributor.authorYang, Sungeun-
dc.contributor.authorJi, Ho-Il-
dc.contributor.authorPark, Sangbaek-
dc.contributor.authorKim, Hyoungchul-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorKim, Byung-Kook-
dc.contributor.authorHong, Jongsup-
dc.contributor.authorYoon, Kyung Joong-
dc.date.accessioned2024-01-19T14:03:56Z-
dc.date.available2024-01-19T14:03:56Z-
dc.date.created2021-09-04-
dc.date.issued2021-07-05-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116694-
dc.description.abstractThe Ruddlesden-Popper phase lanthanum nickelate, La2NiO4+delta (LNO), offers excellent material properties as a cathode for solid oxide fuel cells (SOFCs). However, taking full advantage of its intrinsic properties is difficult in realistic cells because of its high chemical reactivity with the electrolyte at elevated tempera-tures. Herein, we demonstrate high-performance SOFCs with an LNO-based cathode fabricated by a low-temperature processing route that suppresses harmful chemical reactions. The sintering capability of the composite cathode composed of LNO and gadolinia-doped ceria (GDC) was enhanced by mixing Fe-based sintering additive with GDC, which formed reliable interfacial bonding with the electrolyte at a temperature similar to 200 degrees C below the typical processing temperature. Because no interdiffusion between cathode and electrolyte occurs at such low temperatures, the cell is successfully fabricated without diffusion blocking layer, which simplifies the cell structure and manufacturing process. The cell with the LNO-based cathode outperformed state-of-the-art cells, particularly at lower operating temperatures. These results highlight that the processing parameters strongly affect the electrochemical performance of this LNO-based cathode and must be carefully engineered to fully exploit its superior intrinsic properties. (C) 2021 The Author(s). Published by Elsevier B.V.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleLow-temperature processing technique of Ruddlesden-Popper cathode for high-performance solid oxide fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2021.159092-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.868-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume868-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000636039600029-
dc.identifier.scopusid2-s2.0-85101326609-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusLA2NIO4+DELTA-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusEXCHANGE-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorLanthanum nickelate-
dc.subject.keywordAuthorSolid oxide fuel cell-
dc.subject.keywordAuthorCathode-
dc.subject.keywordAuthorInterface-
dc.subject.keywordAuthorChemical reaction-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE