Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jong Min-
dc.contributor.authorJo, Ahrae-
dc.contributor.authorLee, Kyung Ah-
dc.contributor.authorHan, Hyeuk Jin-
dc.contributor.authorKim, Ye Ji-
dc.contributor.authorKim, Ho Young-
dc.contributor.authorLee, Gyu Rac-
dc.contributor.authorKim, Minjoon-
dc.contributor.authorPark, Yemin-
dc.contributor.authorKang, Yun Sik-
dc.contributor.authorJung, Juhae-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorLee, Eoyoon-
dc.contributor.authorHam, Hyung Chul-
dc.contributor.authorJu, Hyunchul-
dc.contributor.authorJung, Yeon Sik-
dc.contributor.authorKim, Jin Young-
dc.date.accessioned2024-01-19T14:30:27Z-
dc.date.available2024-01-19T14:30:27Z-
dc.date.created2021-10-21-
dc.date.issued2021-07-
dc.identifier.issn2375-2548-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116791-
dc.description.abstractUnsupported Pt electrocatalysts demonstrate excellent electrochemical stability when used in polymer electrolyte membrane fuel cells; however, their extreme thinness and low porosity result in insufficient surface area and high mass transfer resistance. Here, we introduce three-dimensionally (3D) customized, multiscale Pt nanoarchitectures (PtNAs) composed of dense and narrow (for sufficient active sites) and sparse (for improved mass transfer) nanoscale building blocks. The 3D-multiscale PtNA fabricated by ultrahigh-resolution nanotransfer printing exhibited excellent performance (45% enhanced maximum power density) and high durability (only 5% loss of surface area for 5000 cycles) compared to commercial Pt/C. We also theoretically elucidate the relationship between the 3D structures and cell performance using computational fluid dynamics. We expect that the structure-controlled 3D electrocatalysts will introduce a new pathway to design and fabricate high-performance electrocatalysts for fuel cells, as well as various electrochemical devices that require the precision engineering of reaction surfaces and mass transfer.-
dc.languageEnglish-
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE-
dc.titleConformation-modulated three-dimensional electrocatalysts for high-performance fuel cell electrodes-
dc.typeArticle-
dc.identifier.doi10.1126/sciadv.abe9083-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENCE ADVANCES, v.7, no.30-
dc.citation.titleSCIENCE ADVANCES-
dc.citation.volume7-
dc.citation.number30-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000675849000007-
dc.identifier.scopusid2-s2.0-85110277653-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusOPERATION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthor3D Pt architecture-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.subject.keywordAuthornanotransfer printing-
dc.subject.keywordAuthorfuel cell-
dc.subject.keywordAuthorelectrocatalyst-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE