Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Changhyeok-
dc.contributor.authorGu, Geun Ho-
dc.contributor.authorNoh, Juhwan-
dc.contributor.authorPark, Hyun S.-
dc.contributor.authorJung, Yousung-
dc.date.accessioned2024-01-19T14:30:47Z-
dc.date.available2024-01-19T14:30:47Z-
dc.date.created2021-10-21-
dc.date.issued2021-07-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116812-
dc.description.abstractA key challenge to realizing practical electrochemical N-2 reduction reaction (NRR) is the decrease in the NRR activity before reaching the mass-transfer limit as overpotential increases. While the hydrogen evolution reaction (HER) has been suggested to be responsible for this phenomenon, the mechanistic origin has not been clearly explained. Herein, we investigate the potential-dependent competition between NRR and HER using the constant electrode potential model and microkinetic modeling. We find that the H coverage and N-2 coverage crossover leads to the premature decrease of NRR activity. The coverage crossover originates from the larger charge transfer in H+ adsorption than N-2 adsorption. The larger charge transfer in H+ adsorption, which potentially leads to the coverage crossover, is a general phenomenon seen in various heterogeneous catalysts, posing a fundamental challenge to realize practical electrochemical NRR. We suggest several strategies to overcome the challenge based on the present understandings. Practical electrochemical N-2 reduction reaction is challenged by competing side reactions. Here a combination of DFT and mikrokinetic modelling reveals the potential-dependent competition between electrochemical ammonia production and hydrogen evolution on a single-site iron catalyst embedded in N-doped graphene.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleUnderstanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-021-24539-1-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.12, no.1-
dc.citation.titleNature Communications-
dc.citation.volume12-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000677489800006-
dc.identifier.scopusid2-s2.0-85110585621-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL AMMONIA-SYNTHESIS-
dc.subject.keywordPlusFINDING SADDLE-POINTS-
dc.subject.keywordPlusSINGLE-ATOM CATALYSTS-
dc.subject.keywordPlusELASTIC BAND METHOD-
dc.subject.keywordPlusAMBIENT CONDITIONS-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusDOPED GRAPHENE-
dc.subject.keywordPlusN-2 FIXATION-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordAuthor전기화하-
dc.subject.keywordAuthor촉매-
dc.subject.keywordAuthor질소-
dc.subject.keywordAuthor암모니아-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE