Full metadata record

DC Field Value Language
dc.contributor.authorKim, Woong-Ju-
dc.contributor.authorKang, Jin Gu-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2024-01-19T14:31:24Z-
dc.date.available2024-01-19T14:31:24Z-
dc.date.created2022-01-10-
dc.date.issued2021-06-15-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116853-
dc.description.abstractSilicon is considered a promising candidate for lithium-ion battery anodes because of its exceptionally high capacity. However, employing Si in real applications remains a challenge, owing to dramatic reduction in the capacity after a few cycles. Redesigning the advanced electrode structure, including the available free volume and continuous conductive scaffold, may potentially circumvent this problem. Here, we demonstrate a new method of creating binder- and conductive additive-free three-dimensional (3D) porous network Si@C electrodes via fibrin hydrogel templating followed by pyrolysis. Hydrogen bonds between hydroxyl groups on Si and amides of fibrin enable the hierarchical 3D structures. These comprise well-distributed Si nanoparticles (SiNPs) in carbon frameworks, with each particle conformally encapsulated by the carbon layer. We confirm that carbon is doped with nitrogen and that pyridinic N and pyrrolic N are the predominant configurations. The 3D Si@C electrode exhibits a good rate performance (capacity of 730 mAh g(-1) at 1000 mA g(-1) (0.5C, Si + C basis)) and also a stable cycling property (54% capacity retention after 500 cycles at 500 mA g(-1)). Compared to a conventional mixture (SiNPs/alginate/Super P), the 3D Si@C electrode exhibits significantly improved electrochemical properties.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectDOPED POROUS CARBON-
dc.subjectSILICON-
dc.subjectSPECTROSCOPY-
dc.subjectELECTRODES-
dc.subjectSTORAGE-
dc.titleFibrin biopolymer hydrogel-templated 3D interconnected Si@C framework for lithium ion battery anodes-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2021.149439-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED SURFACE SCIENCE, v.551-
dc.citation.titleAPPLIED SURFACE SCIENCE-
dc.citation.volume551-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000674654300061-
dc.identifier.scopusid2-s2.0-85102145630-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDOPED POROUS CARBON-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorFibrin template-
dc.subject.keywordAuthorHydrogen bonding-
dc.subject.keywordAuthorPyrolysis-
dc.subject.keywordAuthor3D Si@C network-
dc.subject.keywordAuthorN-doped C-
dc.subject.keywordAuthorLithium-ion batteries-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE