Full metadata record

DC Field Value Language
dc.contributor.authorWoo, Jinwoo-
dc.contributor.authorChoi, Hyunkyung-
dc.contributor.authorSa, Young Jin-
dc.contributor.authorKim, Ho Young-
dc.contributor.authorLim, Taejung-
dc.contributor.authorJang, Jue-Hyuk-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorKim, Chul Sung-
dc.contributor.authorJoo, Sang Hoon-
dc.date.accessioned2024-01-19T14:31:31Z-
dc.date.available2024-01-19T14:31:31Z-
dc.date.created2021-10-21-
dc.date.issued2021-06-10-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116861-
dc.description.abstractIron and nitrogen codoped carbon (Fe-N/C) catalysts are considered the most promising nonprecious metal catalysts for the oxygen reduction reaction (ORR), with their activities approaching those of Pt-based catalysts. Recently, silica-based protective-layer or intermediate layer-assisted synthesis strategies have been developed to preferentially generate catalytically active Fe-N-x sites while suppressing inactive Fe clusters. However, the role of the silica layer in the formation of Fe-N-x sites remains elusive. In this study, we used X-ray absorption and Fe-57 Mossbauer spectroscopies to determine the evolution of the structure of Fe-based species during the silica-coating-mediated synthesis. Through X-ray absorption near-edge structure and Fe-57 Mossbauer spectroscopy analyses, the formation of iron silicide (Fe-Si) species after silica coating was identified. Peak parameter analyses of Fe-57 Mossbauer spectroscopy data suggested that the density of active Fe-N-x species with the Fe-N/C catalyst prepared with silica coating was twice as high as that of the Fe-N/C without silica coating. Consequently, the Fe-N/C catalyst with silica coating exhibited a kinetic current density for the ORR (0.9 V vs reversible hydrogen electrode, RHE) twice as high as that without silica coating.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectOXYGEN-REDUCTION REACTION-
dc.subjectFUNCTIONAL THEORY CALCULATIONS-
dc.subjectNITROGEN-DOPED CARBON-
dc.subjectACTIVE-SITES-
dc.subjectFE/N/C-CATALYSTS-
dc.subjectELECTROCATALYTIC ACTIVITY-
dc.subjectACTIVITY TRENDS-
dc.subjectN-COORDINATION-
dc.subjectFUEL-CELL-
dc.subjectIRON-
dc.titleStructural Evolution of Atomically Dispersed Fe Species in Fe-N/C Catalysts Probed by X-ray Absorption and Fe-57 Mossbauer Spectroscopies-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpcc.1c01333-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry C, v.125, no.22, pp.11928 - 11938-
dc.citation.titleThe Journal of Physical Chemistry C-
dc.citation.volume125-
dc.citation.number22-
dc.citation.startPage11928-
dc.citation.endPage11938-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000662197000012-
dc.identifier.scopusid2-s2.0-85108442955-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN-REDUCTION REACTION-
dc.subject.keywordPlusFUNCTIONAL THEORY CALCULATIONS-
dc.subject.keywordPlusNITROGEN-DOPED CARBON-
dc.subject.keywordPlusACTIVE-SITES-
dc.subject.keywordPlusFE/N/C-CATALYSTS-
dc.subject.keywordPlusELECTROCATALYTIC ACTIVITY-
dc.subject.keywordPlusACTIVITY TRENDS-
dc.subject.keywordPlusN-COORDINATION-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusIRON-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE