Full metadata record

DC Field Value Language
dc.contributor.authorJeong, Hui-Yun-
dc.contributor.authorKim, Dong-Gun-
dc.contributor.authorAkpe, Shedrack G.-
dc.contributor.authorPaidi, Vinod K.-
dc.contributor.authorPark, Hyun S.-
dc.contributor.authorLee, Soo-Hyoung-
dc.contributor.authorLee, Kug-Seung-
dc.contributor.authorHam, Hyung Chul-
dc.contributor.authorKim, Pil-
dc.contributor.authorYoo, Sung Jong-
dc.date.accessioned2024-01-19T14:31:41Z-
dc.date.available2024-01-19T14:31:41Z-
dc.date.created2021-10-21-
dc.date.issued2021-06-02-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116872-
dc.description.abstractA simple wet-chemical route for the preparation of core-shell-structured catalysts was developed to achieve high oxygen reduction reaction (ORR) activity with a low Pt loading amount. Nickel nitride (Ni3N) nanoparticles were used as earth-abundant metal-based cores to support thin Pt layers. To realize the site-selective formation of Pt layers on the Ni3N core, hydrogen molecules (H-2) were used as a mild reducing agent. As H-2 oxidation is catalyzed by the surface of Ni3N, the redox reaction between H-2 and Pt(IV) in solution was facilitated on the Ni3N surface, which resulted in the selective deposition of Pt on Ni3N. The controlled Pt formation led to a subnanometer (0.5-1 nm)thick Pt shell on the Ni3N core. By adopting the core-shell structure, higher ORR activity than the commercial Pt/C was achieved. Electrochemical measurements showed that the thin Pt layer on Ni3N nanoparticle exhibits 5 times higher mass activity and specific activity than that of commercial Pt/C. Furthermore, it is expected that the proposed simple wet-chemical method can be utilized to prepare various transition-metal-based core-shell nanocatalysts for a wide range of energy conversion reactions.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectX-RAY-ABSORPTION-
dc.subjectCORE-SHELL CATALYST-
dc.subjectSURFACE SEGREGATION-
dc.subjectRECENT ADVANCEMENTS-
dc.subjectHIGH-PERFORMANCE-
dc.subjectIN-SITU-
dc.subjectPLATINUM-
dc.subjectELECTROCATALYSTS-
dc.subjectALLOY-
dc.subjectSTABILITY-
dc.titleHydrogen-Mediated Thin Pt Layer Formation on Ni3N Nanoparticles for the Oxygen Reduction Reaction-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.1c01544-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.13, no.21, pp.24624 - 24633-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume13-
dc.citation.number21-
dc.citation.startPage24624-
dc.citation.endPage24633-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000659315800025-
dc.identifier.scopusid2-s2.0-85107711027-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusCORE-SHELL CATALYST-
dc.subject.keywordPlusSURFACE SEGREGATION-
dc.subject.keywordPlusRECENT ADVANCEMENTS-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusIN-SITU-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorfuel cell-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.subject.keywordAuthorelectrocatalyst-
dc.subject.keywordAuthorcore-shell structure-
dc.subject.keywordAuthorplatinum-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE