Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Hee Young-
dc.contributor.authorYoon, Han Gyu-
dc.contributor.authorPark, Sung Min-
dc.contributor.authorLee, Doo Bong-
dc.contributor.authorChoi, Jun Woo-
dc.contributor.authorWon, Changyeon-
dc.date.accessioned2024-01-19T14:32:37Z-
dc.date.available2024-01-19T14:32:37Z-
dc.date.created2021-09-05-
dc.date.issued2021-06-
dc.identifier.issn2198-3844-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116927-
dc.description.abstractNumerical generation of physical states is essential to all scientific research fields. The role of a numerical generator is not limited to understanding experimental results; it can also be employed to predict or investigate characteristics of uncharted systems. A variational autoencoder model is devised and applied to a magnetic system to generate energetically stable magnetic states with low local deformation. The spin structure stabilization is made possible by taking the explicit magnetic Hamiltonian into account to minimize energy in the training process. A significant advantage of the model is that the generator can create a long-range ordered ground state of spin configuration by increasing the role of stabilization even if the ground states are not necessarily included in the training process. It is expected that the proposed Hamiltonian-guided generative model can bring about great advances in numerical approaches used in various scientific research fields.-
dc.languageEnglish-
dc.publisherWILEY-
dc.subjectREAL-SPACE OBSERVATION-
dc.subjectDYNAMICS-
dc.titleMagnetic State Generation using Hamiltonian Guided Variational Autoencoder with Spin Structure Stabilization-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202004795-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED SCIENCE, v.8, no.11-
dc.citation.titleADVANCED SCIENCE-
dc.citation.volume8-
dc.citation.number11-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000631777700001-
dc.identifier.scopusid2-s2.0-85102940814-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusREAL-SPACE OBSERVATION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordAuthorenergy minimization-
dc.subject.keywordAuthorgenerative model-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthormicromagnetism-
dc.subject.keywordAuthorthe ground state-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE