Full metadata record

DC Field Value Language
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorLim, Chulwan-
dc.contributor.authorLee, Si Young-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorChoi, Chang Hyuck-
dc.contributor.authorLee, Ung-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorHwang, Yun Jeong-
dc.contributor.authorOh, Hyung-Suk-
dc.date.accessioned2024-01-19T14:32:59Z-
dc.date.available2024-01-19T14:32:59Z-
dc.date.created2021-09-04-
dc.date.issued2021-06-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116948-
dc.description.abstractThe electrochemical reduction of CO2 to ethylene has the potential to reduce greenhouse gas emissions while producing commodity chemicals for plastics; however, a scalable and feasible system for this remains a challenge. Herein, we report an efficient and stackable electrode design for the electrolysis of CO2 to ethylene. Using KOH-incorporated Cu nanoparticle (Cu-KOH) as the cathode in a zero-gap electrolyzer, Faradaic efficiency of 78.7% for C-2 products was achieved at a current density of 281 mA cm(-2). Among C-2 products, ethylene with a 54.5% FE was dominant product. For mass production, three membrane electrode assemblies (MEAs) were stacked and operated. Operando X-ray absorption spectroscopy under the zero-gap electrolyzer suggested mainly metallic Cu state with some persistent oxide-derived Cu species in Cu-KOH, including Cu2O and Cu(OH)(2), which expected a synergistic effect for the conversion of CO2 to C2H4. Our findings provide a new strategy for converting CO2 to C2H4, which is expected to accelerate the commercialization of high-value chemical production through electrochemical CO2 reduction.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHighly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2021.105859-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Energy, v.84-
dc.citation.titleNano Energy-
dc.citation.volume84-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000649697700002-
dc.identifier.scopusid2-s2.0-85100900686-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE REDUCTION-
dc.subject.keywordPlusFUEL-CELL STACK-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusCOPPER ELECTRODES-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusINSIGHTS-
dc.subject.keywordPlusSTATE-
dc.subject.keywordAuthorZero-gap electrolyzer-
dc.subject.keywordAuthorCO2 reduction reaction (CO2RR)-
dc.subject.keywordAuthorEthylene-
dc.subject.keywordAuthorKOH incorporated Cu-
dc.subject.keywordAuthorScaling and stacking up system-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE