Full metadata record

DC Field Value Language
dc.contributor.authorKim, W.C.-
dc.contributor.authorNa, M.Y.-
dc.contributor.authorKwon, H.J.-
dc.contributor.authorNa, Y.S.-
dc.contributor.authorWon, J.W.-
dc.contributor.authorChang, H.J.-
dc.contributor.authorLim, K.R.-
dc.date.accessioned2024-01-19T14:33:04Z-
dc.date.available2024-01-19T14:33:04Z-
dc.date.created2021-09-02-
dc.date.issued2021-06-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116954-
dc.description.abstractFor alloys with nanoprecipitate/matrix microstructures, the lattice coherency between the two phases plays an important role in determining the mechanical performances at high temperature. In this work, we systematically investigate the AlxCr13.3Fe71.5-xNi11.2Ti4 (x=8, 10, 12, 14, 16 at%) complex concentrated alloys with an aim to enhance the lattice coherency between the BCC matrix and L21 precipitate. The precipitate microstructures, lattice misfit and the resultant coherency strain evolution are comprehensively studied. With increasing Al from 8 at% to 16 at%, the interfacial structure gradually transforms from semicoherent to fully coherent interface by the decrease in precipitate size and lattice misfit, which leads to the stronger elastic interaction between the matrix and precipitate. Meanwhile, the crystal structure of precipitate is slightly distorted from cubic to tetragonal. The yield strength of alloys at room temperature continuously increases with the addition of Al by the solid-solution strengthening and precipitation hardening effect. Here, the mechanism of precipitation hardening changes from Orowan process to coherency strengthening. Interestingly, the strengthening effect by Al addition is further amplified in the tensile test at 700 °C. The higher degree of lattice coherency and the distorted structure of the precipitate resulting from the Al addition lead to the effective strain transfer and the stronger precipitate, respectively. Therefore, the Al16Cr13.3Fe55.5Ni11.2Ti4 alloy exhibits an excellent combination of yield strength (400.8 MPa) and ultimate tensile strength (572.9 MPa). These values are much higher than those of the previously reported nanoprecipiate-strengthened alloys, suggesting that the alloy is highly promising as high temperature structural applications. ? 2021-
dc.languageEnglish-
dc.publisherActa Materialia Inc-
dc.subjectAge hardening-
dc.subjectAluminum alloys-
dc.subjectChromium alloys-
dc.subjectChromium compounds-
dc.subjectCrystal structure-
dc.subjectHardening-
dc.subjectHardness-
dc.subjectHigh temperature applications-
dc.subjectIron alloys-
dc.subjectIron compounds-
dc.subjectMicrostructure-
dc.subjectNickel alloys-
dc.subjectNickel compounds-
dc.subjectPrecipitation (chemical)-
dc.subjectTensile strength-
dc.subjectTensile testing-
dc.subjectTitanium compounds-
dc.subjectYield stress-
dc.subjectCoherent interface-
dc.subjectElastic interactions-
dc.subjectHigh temperature structural applications-
dc.subjectInterfacial structures-
dc.subjectMechanical performance-
dc.subjectSolid solution strengthening-
dc.subjectStrengthening effect-
dc.subjectUltimate tensile strength-
dc.subjectTitanium alloys-
dc.titleDesigning L21-strengthened Al-Cr-Fe-Ni-Ti complex concentrated alloys for high temperature applications-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2021.116890-
dc.description.journalClass1-
dc.identifier.bibliographicCitationActa Materialia, v.211-
dc.citation.titleActa Materialia-
dc.citation.volume211-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85105694458-
dc.type.docTypeArticle-
dc.subject.keywordPlusAge hardening-
dc.subject.keywordPlusAluminum alloys-
dc.subject.keywordPlusChromium alloys-
dc.subject.keywordPlusChromium compounds-
dc.subject.keywordPlusCrystal structure-
dc.subject.keywordPlusHardening-
dc.subject.keywordPlusHardness-
dc.subject.keywordPlusHigh temperature applications-
dc.subject.keywordPlusIron alloys-
dc.subject.keywordPlusIron compounds-
dc.subject.keywordPlusMicrostructure-
dc.subject.keywordPlusNickel alloys-
dc.subject.keywordPlusNickel compounds-
dc.subject.keywordPlusPrecipitation (chemical)-
dc.subject.keywordPlusTensile strength-
dc.subject.keywordPlusTensile testing-
dc.subject.keywordPlusTitanium compounds-
dc.subject.keywordPlusYield stress-
dc.subject.keywordPlusCoherent interface-
dc.subject.keywordPlusElastic interactions-
dc.subject.keywordPlusHigh temperature structural applications-
dc.subject.keywordPlusInterfacial structures-
dc.subject.keywordPlusMechanical performance-
dc.subject.keywordPlusSolid solution strengthening-
dc.subject.keywordPlusStrengthening effect-
dc.subject.keywordPlusUltimate tensile strength-
dc.subject.keywordPlusTitanium alloys-
dc.subject.keywordAuthorCoherency strain-
dc.subject.keywordAuthorComplex concentrated alloys-
dc.subject.keywordAuthorHigh temperature strength-
dc.subject.keywordAuthorLattice misfit-
dc.subject.keywordAuthorPrecession electron diffraction-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE