Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dong Gun-
dc.contributor.authorKim, Hae-Ryoung-
dc.contributor.authorKwon, Dae Seon-
dc.contributor.authorLim, Junil-
dc.contributor.authorSeo, Haengha-
dc.contributor.authorKim, Tae Kyun-
dc.contributor.authorPaik, Heewon-
dc.contributor.authorLee, Woongkyu-
dc.contributor.authorHwang, Cheol Seong-
dc.date.accessioned2024-01-19T14:33:50Z-
dc.date.available2024-01-19T14:33:50Z-
dc.date.created2022-01-10-
dc.date.issued2021-05-06-
dc.identifier.issn0022-3727-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117000-
dc.description.abstractY2O3/TiO2 bilayer thin films and Y-doped TiO2 (YTO) thin films were deposited on a Ge substrate by atomic layer deposition at a substrate temperature of 250 degrees C. They were used as gate insulators to examine the electrical properties of Pt/TiN/TiO2/Y2O3/p-Ge and Pt/TiN/YTO/p-Ge metal-oxide-semiconductor capacitors. A 7 nm thick bilayer thin film showed a lower leakage current density by more than one order of magnitude compared to a YTO thin film with the same thickness due to the high conduction band offset between the Y2O3 layer and Ge substrate. However, the bilayer thin film showed a large hysteresis of 950 mV. On the other hand, the YTO thin film showed significantly reduced hysteresis of 120 mV due to the smaller slow trap density. The voltage acceleration factors of the bilayer thin film and YTO thin film were 1.12 and 1.25, respectively, higher in the YTO thin film. The interfacial trap density of the 7 nm thick bilayer and YTO thin films were 3.5 x 10(11) cm(-2) eV(-1) and 2.7 x 10(11)cm(-2) eV(-1), respectively. The equivalent oxide thickness of the YTO film could be scaled down to 0.9 nm, and a leakage current density of 1.4 x 10(-4)A cm(-2) at flat band voltage -1 V was achieved. This study confirmed that the YTO film can be used as a promising ternary high-k oxide for a Ge-based field-effect-transistor.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.titleComparison of high-k Y2O3/TiO2 bilayer and Y-doped TiO2 thin films on Ge substrate-
dc.typeArticle-
dc.identifier.doi10.1088/1361-6463/abdefe-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF PHYSICS D-APPLIED PHYSICS, v.54, no.18-
dc.citation.titleJOURNAL OF PHYSICS D-APPLIED PHYSICS-
dc.citation.volume54-
dc.citation.number18-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000620959100001-
dc.identifier.scopusid2-s2.0-85101701021-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusSURFACE PASSIVATION-
dc.subject.keywordPlusMOS INTERFACES-
dc.subject.keywordPlusTRAP DENSITY-
dc.subject.keywordPlusSEMICONDUCTOR-
dc.subject.keywordPlusDIELECTRICS-
dc.subject.keywordPlusVOLTAGE-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordAuthorternary high-k oxide-
dc.subject.keywordAuthorY-doped TiO2-
dc.subject.keywordAuthorY2O3-
dc.subject.keywordAuthorTiO2-
dc.subject.keywordAuthorGe MOS capacitor-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE