Full metadata record

DC Field Value Language
dc.contributor.authorNakajima, Ryuichi-
dc.contributor.authorLaskaris, Nikolaos-
dc.contributor.authorRhee, Jun Kyu-
dc.contributor.authorBaker, Bradley J.-
dc.contributor.authorKosmidis, Efstratios K.-
dc.date.accessioned2024-01-19T14:34:29Z-
dc.date.available2024-01-19T14:34:29Z-
dc.date.created2021-10-21-
dc.date.issued2021-05-
dc.identifier.issn0953-816X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117040-
dc.description.abstractThe CA1 area in the mammalian hippocampus is essential for spatial learning. Pyramidal cells are the hippocampus output neurons and their activities are regulated by inhibition exerted by a diversified population of interneurons. Lateral inhibition has been suggested as the mechanism enabling the reconfiguration of pyramidal cell assembly activity observed during spatial learning tasks in rodents. However, lateral inhibition in the CA1 lacks the overwhelming evidence reported in other hippocampal areas such as the CA3 and the dentate gyrus. The use of genetically encoded voltage indicators and fast optical recordings permits the construction of cell-type specific response maps of neuronal activity. Here, we labelled mouse CA1 pyramidal neurons with the genetically encoded voltage indicator ArcLight and optically recorded their response to Schaffer Collaterals stimulation in vitro. By undertaking a manifold learning approach, we report a hyperpolarization-dominated area focused in the perisomatic region of pyramidal cells receiving late excitatory synaptic input. Functional network organization metrics revealed that information transfer was higher in this area. The localized hyperpolarization disappeared when GABA(A) receptors were pharmacologically blocked. This is the first report where the spatiotemporal pattern of lateral inhibition is visualized in the CA1 by expressing a genetically encoded voltage indicator selectively in principal neurons. Our analysis suggests a fundamental role of lateral inhibition in CA1 information processing.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleGEVI cell-type specific labelling and a manifold learning approach provide evidence for lateral inhibition at the population level in the mouse hippocampal CA1 area-
dc.typeArticle-
dc.identifier.doi10.1111/ejn.15177-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEUROPEAN JOURNAL OF NEUROSCIENCE, v.53, no.9, pp.3019 - 3038-
dc.citation.titleEUROPEAN JOURNAL OF NEUROSCIENCE-
dc.citation.volume53-
dc.citation.number9-
dc.citation.startPage3019-
dc.citation.endPage3038-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000631510800001-
dc.identifier.scopusid2-s2.0-85102867701-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.type.docTypeArticle-
dc.subject.keywordPlusFEEDFORWARD INHIBITION-
dc.subject.keywordPlusGABAERGIC INHIBITION-
dc.subject.keywordPlusAXONAL PROJECTIONS-
dc.subject.keywordPlusPYRAMIDAL CELLS-
dc.subject.keywordPlusINTERNEURONS-
dc.subject.keywordPlusORGANIZATION-
dc.subject.keywordPlusDYSFUNCTION-
dc.subject.keywordPlusCIRCUITS-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusPOTENTIATION-
dc.subject.keywordAuthorArcLight-
dc.subject.keywordAuthorCA1-
dc.subject.keywordAuthorfunctional network organization-
dc.subject.keywordAuthorgenetically encoded voltage indicators-
dc.subject.keywordAuthorlateral inhibition-
dc.subject.keywordAuthormanifold learning-
dc.subject.keywordAuthoroptical recordings-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE