Full metadata record

DC Field Value Language
dc.contributor.authorMohamed, Badr A.-
dc.contributor.authorEllis, Naoko-
dc.contributor.authorKim, Chang Soo-
dc.contributor.authorBi, Xiaotao-
dc.contributor.authorChen, Wei-Hsin-
dc.date.accessioned2024-01-19T15:00:45Z-
dc.date.available2024-01-19T15:00:45Z-
dc.date.created2021-09-05-
dc.date.issued2021-05-
dc.identifier.issn0045-6535-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117093-
dc.description.abstractPb, Ni, and Co are among the most toxic heavy metals that pose direct risks to humans and biota. There are no published studies on biochars produced at low temperatures (i.e., 300 degrees C), which possess high sorption capacity for heavy metal remediation and reclamation of contaminated sandy soils. This research studied the effect of catalytic microwave pyrolysis of switchgrass (SG) using bentonite and K3PO4 to produce biochar at low temperature (300 degrees C) with high sorption capacity for reducing the phytotoxicity of heavy metals, and investigated the synergistic effects of catalyst mixture on biochar sorption capacity. The quality of the biochars was examined in terms of their impacts on plant growth, reducing phytotoxicity and uptake of heavy metals in sandy soil spiked with Pb, Ni, and Co. All catalysts increased the micropore surface area and cation-exchange capacity of biochars, and resulted in biochars rich in plant nutrients, which not only decreased heavy metal phytotoxicity, but also boosted plant growth in the spiked soil by up to 140% compared to the sample without biochar. By mixing bentonite and K3PO4 with SG during microwave pyrolysis, the efficacy of biochar in reducing phytotoxicity and heavy metals uptake was further enhanced because of the highest micropore surface area (402 m(2)/g), moderate contents of Ca, Mg, K, and Fe for ion-exchange and moderate concentration of phosphorus for the formation of insoluble heavy metal compounds. Generally, the biochar created at 300 degrees C (300-30KP) showed similar performance to the biochar created at 400 degrees C (400-30KP) in terms of reducing heavy metal bioavailability. (C) 2021 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleEngineered biochars from catalytic microwave pyrolysis for reducing heavy metals phytotoxicity and increasing plant growth-
dc.typeArticle-
dc.identifier.doi10.1016/j.chemosphere.2021.129808-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemosphere, v.271-
dc.citation.titleChemosphere-
dc.citation.volume271-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000633464400103-
dc.identifier.scopusid2-s2.0-85100607544-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordAuthorCatalytic microwave-pyrolysis-
dc.subject.keywordAuthorLow temperature-
dc.subject.keywordAuthorEngineered-biochars-
dc.subject.keywordAuthorK3PO4-
dc.subject.keywordAuthorBentonite-
dc.subject.keywordAuthorSynergistic effects-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE