Full metadata record

DC Field Value Language
dc.contributor.authorYoon, S.-
dc.contributor.authorYu, M.-
dc.contributor.authorKim, E.-
dc.contributor.authorYu, Jaesang-
dc.date.accessioned2024-01-19T15:01:04Z-
dc.date.available2024-01-19T15:01:04Z-
dc.date.created2021-09-02-
dc.date.issued2021-05-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117105-
dc.description.abstractDistributed optical fiber sensors are a promising technology for monitoring the structural health of large-scale structures. The fiber sensors are usually coated with nonfragile materials to protect the sensor and are bonded onto the structure using adhesive materials. However, local deformation of the relatively soft coating and adhesive layers hinders strain transfer from the base structure to the optical fiber sensor, which reduces and distorts its strain distribution. In this study, we analytically derive a strain transfer function in terms of strain periods, which enables us to understand how the strain reduces and is distorted in the optical fiber depending on the variation of the strain field. We also propose a method for back-calculating the base structure’s strain field using the reduced and distorted strain distribution in the optical fiber sensor. We numerically demonstrate the back-calculation of the base strain using a composite beam model with an open hole and an attached distributed optical fiber sensor. The new strain transfer function and the proposed back-calculation method can enhance the strain field estimation accuracy in using a distributed optical fiber sensor. This enables us to use a highly durable distributed optical fiber sensor with thick protective layers in precision measurement. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland.-
dc.languageEnglish-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleStrain transfer function of distributed optical fiber sensors and back-calculation of the base strain field-
dc.typeArticle-
dc.identifier.doi10.3390/s21103365-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSensors, v.21, no.10-
dc.citation.titleSensors-
dc.citation.volume21-
dc.citation.number10-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000662522300001-
dc.identifier.scopusid2-s2.0-85105491284-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusAdhesives-
dc.subject.keywordPlusFiber optic sensors-
dc.subject.keywordPlusOptical fibers-
dc.subject.keywordPlusStructural health monitoring-
dc.subject.keywordPlusAdhesive materials-
dc.subject.keywordPlusComposite beam model-
dc.subject.keywordPlusDistributed optical fiber sensors-
dc.subject.keywordPlusLarge scale structures-
dc.subject.keywordPlusLocal deformations-
dc.subject.keywordPlusPrecision measurement-
dc.subject.keywordPlusStrain distributions-
dc.subject.keywordPlusStructural health-
dc.subject.keywordPlusTransfer functions-
dc.subject.keywordAuthorDistributed optical fiber sensor-
dc.subject.keywordAuthorStrain back-calculation-
dc.subject.keywordAuthorStrain transfer function-
dc.subject.keywordAuthorStructural health monitoring-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE