Full metadata record

DC Field Value Language
dc.contributor.authorLee, DongJoon-
dc.contributor.authorJeong, WonMin-
dc.contributor.authorYun, DeokHyun-
dc.contributor.authorPark, Seung-Young-
dc.contributor.authorJu, Byeong-Kwon-
dc.contributor.authorLee, Kyung-Jin-
dc.contributor.authorMin, Byoung-Chul-
dc.contributor.authorKoo, Hyun Cheol-
dc.contributor.authorLee, OukJae-
dc.date.accessioned2024-01-19T15:03:09Z-
dc.date.available2024-01-19T15:03:09Z-
dc.date.created2021-09-05-
dc.date.issued2021-04-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117210-
dc.description.abstractWe investigate the effects of interfacial oxidation on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques in heavy-metal (Pt)/ferromagnet (Co or NiFe)/capping (MgO/Ta, HfOx, or TaN) structures. At room temperature, the capping materials influence the effective surface magnetic anisotropy energy density, which is associated with the formation of interfacial magnetic oxides. The magnetic damping parameter of Co is considerably influenced by the capping material (especially MgO) while that of NiFe is not. This is possibly due to extra magnetic damping via spin-pumping process across the Co/CoO interface and incoherent magnon generation (spin fluctuation) developed in the antiferromagnetic CoO. It is also observed that both antidamping and field-like spin-orbit torque efficiencies vary with the capping material in the thickness ranges we examined. Our results reveal the crucial role of interfacial oxides on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleEffects of Interfacial Oxidization on Magnetic Damping and Spin-Orbit Torques-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.1c00608-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.13, no.16, pp.19414 - 19421-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume13-
dc.citation.number16-
dc.citation.startPage19414-
dc.citation.endPage19421-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000645520700104-
dc.identifier.scopusid2-s2.0-85104935940-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordAuthorspintronics-
dc.subject.keywordAuthorspin-orbit torque-
dc.subject.keywordAuthorspin-Hall effect-
dc.subject.keywordAuthorGilbert damping-
dc.subject.keywordAuthorinterfacial magnetic oxide-
dc.subject.keywordAuthormagnetic resonance-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE