Full metadata record

DC Field Value Language
dc.contributor.authorSikdar, Anirban-
dc.contributor.authorMajumdar, Abhisek-
dc.contributor.authorGogoi, Abhijit-
dc.contributor.authorDutta, Pronoy-
dc.contributor.authorBorah, Munu-
dc.contributor.authorMaiti, Soumen-
dc.contributor.authorGogoi, Chiranjib-
dc.contributor.authorReddy, K. Anki-
dc.contributor.authorOh, Youngtak-
dc.contributor.authorMaiti, Uday Narayan-
dc.date.accessioned2024-01-19T15:03:49Z-
dc.date.available2024-01-19T15:03:49Z-
dc.date.created2022-01-10-
dc.date.issued2021-03-28-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117244-
dc.description.abstractExposing the surface states of metal-organic frameworks (MOFs) by tuning the shape and size of their nanostructures is expected to enhance their functionalities in practical applications. Herein, a highly scalable 'hydrogel-organic interfacial diffusion' driven approach is utilized for direct growth of metal-organic framework (MOF) nanocrystals over a porous graphene hydrogel framework with fine structural control. Molecular dynamics (MD) simulation of this heterostructure reveals that, two-stage diffusion (hydrogel-organic interfacial and intra-hydrogel) control of organic ligand molecules and their interaction with the graphene surface play key roles in tunable MOF-hydrogel formation. The resulting tri-metallic MOF-hydrogel-hybrid derived porous aerogel exhibits state-of-the-art oxygen evolution reaction (OER) performance metrics with excellent operational stability in alkaline medium. The overpotential required to achieve a current density of 10 mA cm(-2) is as low as 255 mV and a small Tafel slope of 44.3 mV dec(-1) signifies a very high rate of oxygen evolution reaction. The hydrogel-organic interfacial principle of this material could be applied to produce versatile graphene-MOF heterostructures as well as other diverse functional graphene-gel-nanohybrids (e.g. metal nanoparticles, conducting polymers) with intriguing application prospects.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleDiffusion driven nanostructuring of metal-organic frameworks (MOFs) for graphene hydrogel based tunable heterostructures: highly active electrocatalysts for efficient water oxidation-
dc.typeArticle-
dc.identifier.doi10.1039/d0ta09077h-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.9, no.12, pp.7640 - 7649-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume9-
dc.citation.number12-
dc.citation.startPage7640-
dc.citation.endPage7649-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000635284900027-
dc.identifier.scopusid2-s2.0-85103481408-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE