Full metadata record

DC Field Value Language
dc.contributor.authorKang, Sukhyun-
dc.contributor.authorJeong, Young Kyu-
dc.contributor.authorMhin, Sungwook-
dc.contributor.authorRyu, Jeong Ho-
dc.contributor.authorAli, Ghulam-
dc.contributor.authorLee, Kangpyo-
dc.contributor.authorAkbar, Muhammad-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorHan, HyukSu-
dc.contributor.authorKim, Kang Min-
dc.date.accessioned2024-01-19T15:03:57Z-
dc.date.available2024-01-19T15:03:57Z-
dc.date.created2021-10-21-
dc.date.issued2021-03-23-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117250-
dc.description.abstractThe design of atomically dispersed single atom catalysts (SACs) must consider high metal-atom loading amount, effective confinement, and strong interactions with matrix, which can maximize their catalytic performance. Here reported is a promising method to synthesize SACs on highly conductive multiwall carbon nanotube (MWCNT) supports using pulsed laser confinement (PLC) process in liquid. Atomic cobalt (Co) and phosphorus (P) with a high loading density are homogeneously incorporated on the outer wall of the MWCNT (Co-P SAC MWCNT). Density functional theory (DFT) calculations in combination with systematic control experiments found that the incorporated Co and P adatoms act as an adsorption energy optimizer and a charge transfer promoter, respectively. Hence, favorable kinetics and thermodynamics in Co-P SAC MWCNT can be simultaneously achieved for water oxidation resulting in a superior catalytic performance than the benchmark RuO2 catalyst. Crucially, total processing time for assembling Co-P SAC MWCNT via PLC process is less than 60 min, shedding light on the promising practical applications of our SAC design strategy.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titlePulsed Laser Confinement of Single Atomic Catalysts on Carbon Nanotube Matrix for Enhanced Oxygen Evolution Reaction-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.0c08135-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS NANO, v.15, no.3, pp.4416 - 4428-
dc.citation.titleACS NANO-
dc.citation.volume15-
dc.citation.number3-
dc.citation.startPage4416-
dc.citation.endPage4428-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000634569100060-
dc.identifier.scopusid2-s2.0-85101637464-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOBALT CATALYST-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusNICKEL-
dc.subject.keywordPlusIRON-
dc.subject.keywordAuthorelectrocatalyst-
dc.subject.keywordAuthorsingle atoms-
dc.subject.keywordAuthorpulsed laser-
dc.subject.keywordAuthorwater splitting-
dc.subject.keywordAuthoroxygen evolution reaction-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE