Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hojun-
dc.contributor.authorPark, Sungwook-
dc.contributor.authorJeong, In Gab-
dc.contributor.authorSong, Sang Hoon-
dc.contributor.authorJeong, Youngdo-
dc.contributor.authorKim, Choung-Soo-
dc.contributor.authorLee, Kwan Hyi-
dc.date.accessioned2024-01-19T15:03:58Z-
dc.date.available2024-01-19T15:03:58Z-
dc.date.created2021-09-05-
dc.date.issued2021-03-23-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117251-
dc.description.abstractScreening for prostate cancer relies on the serum prostatespecific antigen test, which provides a high rate of false positives (80%). This results in a large number of unnecessary biopsies and subsequent overtreatment. Considering the frequency of the test, there is a critical unmet need of precision screening for prostate cancer. Here, we introduced a urinary multimarker biosensor with a capacity to learn to achieve this goal. The correlation of clinical state with the sensing signals from urinary multimarkers was analyzed by two common machine learning algorithms. As the number of biomarkers was increased, both algorithms provided a monotonic increase in screening performance. Under the best combination of biomarkers, the machine learning algorithms screened prostate cancer patients with more than 99% accuracy using 76 urine specimens. Urinary multimarker biosensor leveraged by machine learning analysis can be an important strategy of precision screening for cancers using a drop of bodily fluid.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleNoninvasive Precision Screening of Prostate Cancer by Urinary Multimarker Sensor and Artificial Intelligence Analysis-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.0c06946-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS NANO, v.15, no.3, pp.4054 - 4065-
dc.citation.titleACS NANO-
dc.citation.volume15-
dc.citation.number3-
dc.citation.startPage4054-
dc.citation.endPage4065-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000634569100028-
dc.identifier.scopusid2-s2.0-85097732503-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlusIMMUNOASSAY-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordPlusBIOMARKERS-
dc.subject.keywordPlusPLATFORM-
dc.subject.keywordPlusBIOPSY-
dc.subject.keywordPlusMARKER-
dc.subject.keywordAuthorcancer screening-
dc.subject.keywordAuthorurine-
dc.subject.keywordAuthormultimarker-
dc.subject.keywordAuthorartificial intelligence-
dc.subject.keywordAuthorprostate cancer-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE