Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyeongwoo-
dc.contributor.authorPark, Jae-Ho-
dc.contributor.authorKim, Sung-Chul-
dc.contributor.authorByun, Dongjin-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Hyung-Seok-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2024-01-19T15:04:22Z-
dc.date.available2024-01-19T15:04:22Z-
dc.date.created2021-09-04-
dc.date.issued2021-03-05-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117271-
dc.description.abstractP2-type Na0.67Ni0.33Mn0.67O2 (NNMO) is a state-of-the-art, high-energy and high-voltage cathode material in sodium-ion batteries. However, surface degradation effects, such as P2-O2 phase transformation, ordering of Na+/vacancy, electrolyte decomposition, and HF attack, limit its electrochemical stability. To counter these effects, we applied Mg1-xNixO (MgNiO) as a coating formed via wet-chemical coating to suppress unfavorable side reactions; surface doping of Mg2+ also occurs post-calcination, which is expected to reduce P2-O2 transition near the surface structure. MgNiO-NNMO exhibited outstanding cycling stability (70.08 mAh g(-1) over 200 cycles) and rate capability (39.41 mAh g(-1) at 5C over 800 cycles). The influence of Mg2+ doping was studied comprehensively through in situ and ex situ X-ray diffraction analysis. Furthermore, to characterize the protective role of the MgNiO coating in harsh conditions, we operated NNMO as Na half cells at a high temperature of 60 degrees C and high voltage of 4.5 V (vs. Na+/Na) for the first time; under these conditions, MgNiO-NNMO exhibited remarkable cycling stability (52.68 mAh g(-1) over 100 cycles) as compared to pristine NNMO (7.213 mAh g(-1) over 100 cycles). Surface analysis via X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy were also conducted to investigate the impact of electrolyte decomposition and HF attack. (C) 2020 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleMultiple effects of Mg1-xNixO coating on P2-type Na0.67Ni0.33Mn0.67O2 to generate highly stable cathodes for sodium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2020.157294-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.856-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume856-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000627309500019-
dc.identifier.scopusid2-s2.0-85092529270-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusLAYERED OXIDE CATHODE-
dc.subject.keywordPlusCYCLING STABILITY-
dc.subject.keywordPlusLONG-LIFE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusVOLTAGE-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusNA2/3NI1/3MN2/3O2-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordAuthorNa0.67Ni0.33Mn0.67O2-
dc.subject.keywordAuthorMg1-xNixO-
dc.subject.keywordAuthorSurface modification-
dc.subject.keywordAuthorCathode materials-
dc.subject.keywordAuthorSodium-ion batteries-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE