Full metadata record

DC Field Value Language
dc.contributor.authorLee, Sung-Hyun-
dc.contributor.authorPark, Junbeom-
dc.contributor.authorPark, Ji Hong-
dc.contributor.authorLee, Dong-Myeong-
dc.contributor.authorLee, Anna-
dc.contributor.authorMoon, Sook Young-
dc.contributor.authorLee, Sei Young-
dc.contributor.authorJeong, Hyeon Su-
dc.contributor.authorKim, Seung Min-
dc.date.accessioned2024-01-19T15:05:06Z-
dc.date.available2024-01-19T15:05:06Z-
dc.date.created2021-10-21-
dc.date.issued2021-03-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117310-
dc.description.abstractThe deep-injection floating-catalyst chemical vapor deposition (DI-FCCVD) technique is introduced to continuously synthesize carbon nanotubes (CNTs) with high aspect ratio (AR>17000) and high crystal-linity (I-G/I-D > 60) at high production rate (>6 mg/min). In this technique all reactants are injected directly and rapidly into high-temperature reaction zone through thin alumina tube; this process leads to simultaneous thermal decomposition of well-mixed catalyst precursors (ferrocene and thiophene), and thus to formation of uniformly-sized catalyst particles. Carbon nanotube fiber (CNTF) fabricated from high-AR CNT has specific strength of 2.94 N/tex and specific modulus of 231 N/tex, which are comparable to those of the state-of-the-art carbon fiber. Both DI-FCCVD and wet spinning methods are easily scalable to mass production, so this study may enable widespread industrial application of CNTFs. (C) 2020 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleDeep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2020.11.065-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon, v.173, pp.901 - 909-
dc.citation.titleCarbon-
dc.citation.volume173-
dc.citation.startPage901-
dc.citation.endPage909-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000613126400003-
dc.identifier.scopusid2-s2.0-85097330925-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFIBERS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordPlusSULFUR-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorHigh-aspect ratio-
dc.subject.keywordAuthorHigh-crystallinity-
dc.subject.keywordAuthorCarbon nanotube fiber-
dc.subject.keywordAuthorHigh-strength-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE