Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | You, Jiwan | - |
dc.contributor.author | Lee, Young Mo | - |
dc.contributor.author | Choi, Han-Hyeong | - |
dc.contributor.author | Kim, Tae Ann | - |
dc.contributor.author | Lee, Sang-Soo | - |
dc.contributor.author | Park, Jong Hyuk | - |
dc.date.accessioned | 2024-01-19T15:05:23Z | - |
dc.date.available | 2024-01-19T15:05:23Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2021-03 | - |
dc.identifier.issn | 1359-835X | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117326 | - |
dc.description.abstract | Compounding polyketone (PK) with carbon fibers (CFs) can provide composites that exhibit excellent properties. However, the thermal stability of PK itself is poor, limiting practical applications at high temperatures. Herein, a novel process is proposed to improve the thermal stability of PK-based carbon fiber-reinforced polymers (CFRPs). The plasma-assisted mechanochemistry (PMC) process creates mechanochemical bonds between materials under dry conditions, reducing polymer chain mobility at high temperatures and increasing the stiffness. Compared with conventional PK-based CFRPs, PMC-processed CFRPs have significantly higher glass transition temperatures and storage modulus, resulting in improved thermal stability. The tensile strength remained >90% after annealing at 150 degrees C for 1000 h. Moreover, despite repeated thermal hysteresis, the recycled PK-based CFRPs showed tensile strength, Young's modulus, and elongation at break that were >90% of initial values. This work provides a feasible and ecofriendly strategy to expand the applications and promote repeated recycling of PK-based CFRPs. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCI LTD | - |
dc.subject | MECHANICAL-PROPERTIES | - |
dc.subject | DEGRADATION | - |
dc.subject | POLYMERIZATION | - |
dc.subject | STABILIZATION | - |
dc.subject | ENTANGLEMENT | - |
dc.subject | NANOTUBES | - |
dc.subject | CATALYST | - |
dc.subject | SURFACE | - |
dc.subject | DOTS | - |
dc.title | Thermally stable and highly recyclable carbon fiber-reinforced polyketone composites based on mechanochemical bond formation | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.compositesa.2020.106251 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, v.142 | - |
dc.citation.title | COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING | - |
dc.citation.volume | 142 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000618630700001 | - |
dc.identifier.scopusid | 2-s2.0-85099655140 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Manufacturing | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Composites | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
dc.subject.keywordPlus | DEGRADATION | - |
dc.subject.keywordPlus | POLYMERIZATION | - |
dc.subject.keywordPlus | STABILIZATION | - |
dc.subject.keywordPlus | ENTANGLEMENT | - |
dc.subject.keywordPlus | NANOTUBES | - |
dc.subject.keywordPlus | CATALYST | - |
dc.subject.keywordPlus | SURFACE | - |
dc.subject.keywordPlus | DOTS | - |
dc.subject.keywordAuthor | Polymer-matrix composites | - |
dc.subject.keywordAuthor | Carbon fibre | - |
dc.subject.keywordAuthor | Recycling | - |
dc.subject.keywordAuthor | Thermal properties | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.