Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Harzandi, Ahmad M. | - |
dc.contributor.author | Shadman, Sahar | - |
dc.contributor.author | Nissimagoudar, Arun S. | - |
dc.contributor.author | Kim, Dong Yeon | - |
dc.contributor.author | Lim, Hee-Dae | - |
dc.contributor.author | Lee, Jong Hoon | - |
dc.contributor.author | Kim, Min Gyu | - |
dc.contributor.author | Jeong, Hu Young | - |
dc.contributor.author | Kim, Youngsik | - |
dc.contributor.author | Kim, Kwang S. | - |
dc.date.accessioned | 2024-01-19T15:30:36Z | - |
dc.date.available | 2024-01-19T15:30:36Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2021-03 | - |
dc.identifier.issn | 1614-6832 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117375 | - |
dc.description.abstract | To develop effective electrocatalytic splitting of acidic water, which is a key reaction for renewable energy conversion, the fundamental understanding of sluggish/destructive mechanism of the oxygen evolution reaction (OER) is essential. Through investigating atom/proton/electron transfers in the OER, the distinctive acid-base (AB) and direct-coupling (DC) lattice oxygen mechanisms (LOMs) and adsorbates evolution mechanism (AEM) are elucidated, depending on the surface-defect engineering condition. The designed catalysts are composed of a compressed metallic Ru-core and oxidized Ru-shell with Ni single atoms (SAs). The catalyst synthesized with hot acid treatment selectively follows AB-LOM, exhibiting simultaneously enhanced activity and stability. It produces a current density of 10/100 mA cm(-2) at a low overpotential of 184/229 mV and sustains water oxidation at a high current density of up to 20 mA cm(-2) over approximate to 200 h in strongly acidic media. | - |
dc.language | English | - |
dc.publisher | Wiley-VCH Verlag | - |
dc.title | Ruthenium Core-Shell Engineering with Nickel Single Atoms for Selective Oxygen Evolution via Nondestructive Mechanism | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/aenm.202003448 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Advanced Energy Materials, v.11, no.10 | - |
dc.citation.title | Advanced Energy Materials | - |
dc.citation.volume | 11 | - |
dc.citation.number | 10 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000611070100001 | - |
dc.identifier.scopusid | 2-s2.0-85099929890 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | GENERALIZED GRADIENT APPROXIMATION | - |
dc.subject.keywordPlus | WATER OXIDATION | - |
dc.subject.keywordPlus | HIGH-PERFORMANCE | - |
dc.subject.keywordPlus | LATTICE OXYGEN | - |
dc.subject.keywordPlus | CATALYST | - |
dc.subject.keywordPlus | ELECTROCATALYSTS | - |
dc.subject.keywordPlus | DISSOLUTION | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordPlus | HYDROGEN | - |
dc.subject.keywordPlus | SURFACE | - |
dc.subject.keywordAuthor | lattice oxygen | - |
dc.subject.keywordAuthor | leaching | - |
dc.subject.keywordAuthor | mechanism | - |
dc.subject.keywordAuthor | nickel | - |
dc.subject.keywordAuthor | oxygen evolution reaction | - |
dc.subject.keywordAuthor | ruthenium | - |
dc.subject.keywordAuthor | surface engineering | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.