Full metadata record

DC Field Value Language
dc.contributor.authorHarzandi, Ahmad M.-
dc.contributor.authorShadman, Sahar-
dc.contributor.authorNissimagoudar, Arun S.-
dc.contributor.authorKim, Dong Yeon-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorLee, Jong Hoon-
dc.contributor.authorKim, Min Gyu-
dc.contributor.authorJeong, Hu Young-
dc.contributor.authorKim, Youngsik-
dc.contributor.authorKim, Kwang S.-
dc.date.accessioned2024-01-19T15:30:36Z-
dc.date.available2024-01-19T15:30:36Z-
dc.date.created2021-09-02-
dc.date.issued2021-03-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117375-
dc.description.abstractTo develop effective electrocatalytic splitting of acidic water, which is a key reaction for renewable energy conversion, the fundamental understanding of sluggish/destructive mechanism of the oxygen evolution reaction (OER) is essential. Through investigating atom/proton/electron transfers in the OER, the distinctive acid-base (AB) and direct-coupling (DC) lattice oxygen mechanisms (LOMs) and adsorbates evolution mechanism (AEM) are elucidated, depending on the surface-defect engineering condition. The designed catalysts are composed of a compressed metallic Ru-core and oxidized Ru-shell with Ni single atoms (SAs). The catalyst synthesized with hot acid treatment selectively follows AB-LOM, exhibiting simultaneously enhanced activity and stability. It produces a current density of 10/100 mA cm(-2) at a low overpotential of 184/229 mV and sustains water oxidation at a high current density of up to 20 mA cm(-2) over approximate to 200 h in strongly acidic media.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleRuthenium Core-Shell Engineering with Nickel Single Atoms for Selective Oxygen Evolution via Nondestructive Mechanism-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202003448-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.11, no.10-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume11-
dc.citation.number10-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000611070100001-
dc.identifier.scopusid2-s2.0-85099929890-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusGENERALIZED GRADIENT APPROXIMATION-
dc.subject.keywordPlusWATER OXIDATION-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusLATTICE OXYGEN-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusDISSOLUTION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordAuthorlattice oxygen-
dc.subject.keywordAuthorleaching-
dc.subject.keywordAuthormechanism-
dc.subject.keywordAuthornickel-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthorruthenium-
dc.subject.keywordAuthorsurface engineering-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE