Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jeong-Gil-
dc.contributor.authorLee, Dong-Myung-
dc.contributor.authorJung, Jae Young-
dc.contributor.authorKim, Min Ji-
dc.contributor.authorKhil, Myung-Seob-
dc.contributor.authorJeong, Hyeon Su-
dc.contributor.authorKim, Nam Dong-
dc.date.accessioned2024-01-19T15:30:46Z-
dc.date.available2024-01-19T15:30:46Z-
dc.date.created2021-09-02-
dc.date.issued2021-02-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117386-
dc.description.abstractCNT fibers (CNTFs) are excellent platforms for fiber-shaped supercapacitors, offering both high electric conductivity and mechanical resilience. Here, we propose a polyaniline (PANI)/CNTF composite structure that utilizes a state-of-the-art liquidcrystal (LC)-spun CNTF as the ultimate conductive and flexible electrode. CNTFs assume a highly dense LC phase with a high electrical conductivity of 14 kS cm(-1), which is similar to that of its metal counterpart and suitable as a good current collector. Pseudocapacitive PANI can be homogeneously polymerized directly onto the smooth surface of the CNTFs by using the sonochemical polymerization method. The optimized synthetic process produces PANI in a favorable chemical state with good contact properties at the CNTF interface, exhibiting a high capacitance (738 F g(-1) at 1 A g(-1)) even at an extremely fast charge/discharge rate (604 F g(-1) at 100 A g(-1)). Moreover, the superior mechanical resilience of the CNTFs enables excellent flexibility, showing a negligible capacitance decay after 15 000 bending cycles, even with tight knots in the middle. These results highlight the excellent potential of highly densified CNTFs in next-generation flexible supercapacitors for practical wearable applications.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleHybrid Polyaniline/Liquid Crystalline CNT Fiber Composite for Ultimate Flexible Supercapacitors-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.0c02217-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.4, no.2, pp.1130 - 1142-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume4-
dc.citation.number2-
dc.citation.startPage1130-
dc.citation.endPage1142-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000621660800012-
dc.identifier.scopusid2-s2.0-85100211594-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordAuthorcarbon nanotube fiber-
dc.subject.keywordAuthorpolyaniline-
dc.subject.keywordAuthorwearable energy storage-
dc.subject.keywordAuthorsonochemistry-
dc.subject.keywordAuthorfiber-shaped supercapacitor-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE