Full metadata record

DC Field Value Language
dc.contributor.authorLee, Dong-Myeong-
dc.contributor.authorPark, Junbeom-
dc.contributor.authorLee, Jaegeun-
dc.contributor.authorLee, Sung-Hyun-
dc.contributor.authorKim, Shin-Hyun-
dc.contributor.authorKim, Seung Min-
dc.contributor.authorJeong, Hyeon Su-
dc.date.accessioned2024-01-19T15:32:04Z-
dc.date.available2024-01-19T15:32:04Z-
dc.date.created2021-09-02-
dc.date.issued2021-02-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117461-
dc.description.abstractWe present a post-treatment method for directly-spun ultra-thick carbon nanotube fibers (CNTFs) with a high linear density of similar to 6 tex (g km(-1)), which can possibly meet industrial-scale productivity. The treatment consists of consecutive steps of swelling of CNTFs in chlorosulfonic acid, stretching, and coagulation. The swelling of CNTFs makes even distribution of the CNT bundles, which are the subunits of CNTFs, and thereby promotes the removal of the interstitial voids and macroscopic pores during subsequent coagulation. The stretching straightens tortuous CNT bundles, and thereby facilitates dense packing of aligned bundles along the fiber axis that are evenly distributed by swelling. However, highly-tortuous CNT bundles in the high linear-density CNTF leads to incremental improvement of structure and properties. The stretching is only effective at stretching ratio (R-S) > 20%, and both tensile strength and electrical conductivity gradually increase as R-S increases, to 27- and 8.7-times at the maximum R-S = 100%. We believe that our study on the influence of R-S on the structure and properties of high linear-density CNTFs provide a new opportunity for designing the industrial process of the post-treatment to commercialize CNTFs. (C) 2020 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleImproving mechanical and physical properties of ultra-thick carbon nanotube fiber by fast swelling and stretching process-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2020.10.068-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon, v.172, pp.733 - 741-
dc.citation.titleCarbon-
dc.citation.volume172-
dc.citation.startPage733-
dc.citation.endPage741-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000600196000006-
dc.identifier.scopusid2-s2.0-85095761869-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusINFILTRATION-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusYARN-
dc.subject.keywordAuthorCarbon nanotube fiber-
dc.subject.keywordAuthorHigh linear density-
dc.subject.keywordAuthorDirect spinning-
dc.subject.keywordAuthorDensification process-
dc.subject.keywordAuthorMechanical and electrical properties-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE