Full metadata record

DC Field Value Language
dc.contributor.authorKim, Haesol-
dc.contributor.authorShin, Dongyup-
dc.contributor.authorYang, Woojin-
dc.contributor.authorWon, Da Hye-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorChung, Min Wook-
dc.contributor.authorJeong, Donghyuk-
dc.contributor.authorKim, Sun Hee-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorRyu, Ji Yeon-
dc.contributor.authorLee, Junseong-
dc.contributor.authorCho, Sung June-
dc.contributor.authorSeo, Jiwon-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorChoi, Chang Hyuck-
dc.date.accessioned2024-01-19T15:32:51Z-
dc.date.available2024-01-19T15:32:51Z-
dc.date.created2021-09-02-
dc.date.issued2021-01-20-
dc.identifier.issn0002-7863-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117510-
dc.description.abstractElectrocatalytic conversion of CO2 into value-added products offers a new paradigm for a sustainable carbon economy. For active CO2 electrolysis, the single-atom Ni catalyst has been proposed as promising from experiments, but an idealized Ni-N-4 site shows an unfavorable energetics from theory, leading to many debates on the chemical nature responsible for high activity. To resolve this conundrum, here we investigated CO2 electrolysis of Ni sites with well-defined coordination, tetraphenylporphyrin (N-4-TPP) and 21-oxatetraphenylporphyrin (N3O-TPP). Advanced spectroscopic and computational studies revealed that the broken ligand-field symmetry is the key for active CO2 electrolysis, which subordinates an increase in the Ni redox potential yielding Ni-I. Along with their importance in activity, ligand-field symmetry and strength are directly related to the stability of the Ni center. This suggests the next quest for an activity-stability map in the domain of ligand-field strength, toward a rational ligand-field engineering of single-atom Ni catalysts for efficient CO2 electrolysis.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCARBON-DIOXIDE-
dc.subjectNICKEL-COMPLEXES-
dc.subjectSTRUCTURAL CHARACTERIZATION-
dc.subjectELECTROCATALYTIC REDUCTION-
dc.subjectSELECTIVE CONVERSION-
dc.subjectEFFICIENT CO2-
dc.subjectELECTROREDUCTION-
dc.subjectELECTRODES-
dc.subjectCATALYSTS-
dc.subjectGRAPHENE-
dc.titleIdentification of Single-Atom Ni Site Active toward Electrochemical CO2 Conversion to CO-
dc.typeArticle-
dc.identifier.doi10.1021/jacs.0c11008-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.143, no.2, pp.925 - 933-
dc.citation.titleJOURNAL OF THE AMERICAN CHEMICAL SOCIETY-
dc.citation.volume143-
dc.citation.number2-
dc.citation.startPage925-
dc.citation.endPage933-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000612557200044-
dc.identifier.scopusid2-s2.0-85100122700-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusNICKEL-COMPLEXES-
dc.subject.keywordPlusSTRUCTURAL CHARACTERIZATION-
dc.subject.keywordPlusELECTROCATALYTIC REDUCTION-
dc.subject.keywordPlusSELECTIVE CONVERSION-
dc.subject.keywordPlusEFFICIENT CO2-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordAuthorCO2 reduction reaction (CO2RR)-
dc.subject.keywordAuthorSingle atom catalyst (SAC)-
dc.subject.keywordAuthorNi-N-C-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE