Full metadata record

DC Field Value Language
dc.contributor.authorGrigioni, Ivan-
dc.contributor.authorSagar, Laxmi Kishore-
dc.contributor.authorLi, Yuguang C.-
dc.contributor.authorLee, Geonhui-
dc.contributor.authorYan, Yu-
dc.contributor.authorBertens, Koen-
dc.contributor.authorMiao, Rui Kai-
dc.contributor.authorWang, Xue-
dc.contributor.authorAbed, Jehad-
dc.contributor.authorWon, Da Hye-
dc.contributor.authorde Arquer, F. Pelayo Garcia-
dc.contributor.authorIp, Alexander H.-
dc.contributor.authorSinton, David-
dc.contributor.authorSargent, Edward H.-
dc.date.accessioned2024-01-19T15:33:20Z-
dc.date.available2024-01-19T15:33:20Z-
dc.date.created2021-09-02-
dc.date.issued2021-01-08-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117541-
dc.description.abstractWe report formate production via CO2 electroreduction at a Faradaic efficiency (FE) of 93% and a partial current density of 930 mA cm(-2), an activity level of potential industrial interest based on prior techno-economic analyses. We devise a catalyst synthesized using InP colloidal quantum dots (CQDs): the capping ligand exchange introduces surface sulfur, and XPS reveals the generation, operando, of an active catalyst exhibiting sulfur-protected oxidized indium and indium metal. Surface indium metal sites adsorb and reduce CO2 molecules, while sulfur sites cleave water and provide protons. The abundance of exposed surface indium sites per quantum dot enables the high formate productivity achieved at low catalyst loadings. The high conductivity of the layer of nanoparticles under negative potential sustains the large current densities.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCARBON-DIOXIDE REDUCTION-
dc.subjectINDIUM-
dc.subjectNANOCRYSTALS-
dc.subjectELECTRODES-
dc.subjectSURFACE-
dc.subjectXPS-
dc.titleCO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm(-2) with InP Colloidal Quantum Dot Derived Catalysts-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.0c02165-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS ENERGY LETTERS, v.6, no.1, pp.79 - 84-
dc.citation.titleACS ENERGY LETTERS-
dc.citation.volume6-
dc.citation.number1-
dc.citation.startPage79-
dc.citation.endPage84-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000609250200010-
dc.identifier.scopusid2-s2.0-85097768926-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE REDUCTION-
dc.subject.keywordPlusINDIUM-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusXPS-
dc.subject.keywordAuthorCarbon dioxide-
dc.subject.keywordAuthorElectrochemical reaction-
dc.subject.keywordAuthorformate-
dc.subject.keywordAuthorColloidal Quantum Dot-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE