Full metadata record

DC Field Value Language
dc.contributor.authorXi, Jiangbo-
dc.contributor.authorYang, Sungeun-
dc.contributor.authorSilvioli, Luca-
dc.contributor.authorCao, Sufeng-
dc.contributor.authorLiu, Pei-
dc.contributor.authorChen, Qiongyang-
dc.contributor.authorZhao, Yanyan-
dc.contributor.authorSun, Hongyu-
dc.contributor.authorHansen, Johannes Novak-
dc.contributor.authorHaraldsted, Jens-Peter B.-
dc.contributor.authorKibsgaard, Jakob-
dc.contributor.authorRossmeisl, Jan-
dc.contributor.authorBals, Sara-
dc.contributor.authorWang, Shuai-
dc.contributor.authorChorkendorff, Ib-
dc.date.accessioned2024-01-19T15:33:59Z-
dc.date.available2024-01-19T15:33:59Z-
dc.date.created2022-01-10-
dc.date.issued2021-01-
dc.identifier.issn0021-9517-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117578-
dc.description.abstractSingle-atom catalysts (SACs) have recently attracted broad scientific interests due to their unique structural feature, the single-atom dispersion. Optimized electronic structure as well as high stability are required for single-atom catalysts to enable efficient electrochemical production of H2O2. Herein, we report a facile synthesis method that stabilizes atomic Pd species on the reduced graphene oxide/Ndoped carbon hollow carbon nanospheres (Pd1/N-C). Pd1/N-C exhibited remarkable electrochemical H2O2 production rate with high faradaic efficiency, reaching 80%. The single-atom structure and its high H2O2 production rate were maintained even after 10,000 cycle stability test. The existence of single-atom Pd as well as its coordination with N species is responsible for its high activity, selectivity, and stability. The N coordination number and substrate doping around Pd atoms are found to be critical for an optimized adsorption energy of intermediate *OOH, resulting in efficient electrochemical H2O2 production. (C) 2020 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleHighly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions-
dc.typeArticle-
dc.identifier.doi10.1016/j.jcat.2020.11.020-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF CATALYSIS, v.393, pp.313 - 323-
dc.citation.titleJOURNAL OF CATALYSIS-
dc.citation.volume393-
dc.citation.startPage313-
dc.citation.endPage323-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000640923500003-
dc.identifier.scopusid2-s2.0-85098087497-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusIRON-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCOORDINATION-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusSITES-
dc.subject.keywordAuthorSingle-atom catalyst-
dc.subject.keywordAuthorNitrogen doped carbon-
dc.subject.keywordAuthorHydrogen peroxide-
dc.subject.keywordAuthorElectrochemical synthesis-
dc.subject.keywordAuthorDensity functional theory-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE