Full metadata record

DC Field Value Language
dc.contributor.authorJo, HyungGi-
dc.contributor.authorLee, Woosub-
dc.contributor.authorKim, Euntai-
dc.date.accessioned2024-01-19T16:00:16Z-
dc.date.available2024-01-19T16:00:16Z-
dc.date.created2021-09-02-
dc.date.issued2021-01-
dc.identifier.issn1551-3203-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117642-
dc.description.abstractGlobal localization using a monocular camera is one of the most challenging problems in computer vision and intelligent robotics. In this article, a new deep neural network named Mixture Density (MD)-PoseNet is proposed to address this problem. Unlike existing learning-based global localization methods that return a single guess for the camera pose, MD-PoseNet returns multiple guesses represented in the form of a Gaussian mixture (GM). The key idea of MD-PoseNet is that the network returns the distribution of all probable camera poses instead of the most probable camera pose, and the distribution represents the multiple guesses for the camera pose. The multiple guesses returned by MD-PoseNet are, consequently, exploited in the probabilistic framework of particle filters. Finally, the proposed method is applied to four different environments, and its validity is demonstrated via experiments.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleMixture Density-PoseNet and its Application to Monocular Camera-Based Global Localization-
dc.typeArticle-
dc.identifier.doi10.1109/TII.2020.2986086-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, v.17, no.1, pp.388 - 397-
dc.citation.titleIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS-
dc.citation.volume17-
dc.citation.number1-
dc.citation.startPage388-
dc.citation.endPage397-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000587719200036-
dc.identifier.scopusid2-s2.0-85096035455-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordAuthorCameras-
dc.subject.keywordAuthorRobot vision systems-
dc.subject.keywordAuthorInformatics-
dc.subject.keywordAuthorTraining-
dc.subject.keywordAuthorThree-dimensional displays-
dc.subject.keywordAuthorImage recognition-
dc.subject.keywordAuthorCNN-
dc.subject.keywordAuthordistribution-
dc.subject.keywordAuthorGaussian mixture-
dc.subject.keywordAuthormixture density-
dc.subject.keywordAuthorparticle filter-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE