Full metadata record

DC Field Value Language
dc.contributor.authorJin, Haneul-
dc.contributor.authorRuqia, Bibi-
dc.contributor.authorPark, Yeji-
dc.contributor.authorKim, Hee Jin-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorChoi, Sang-Il-
dc.contributor.authorLee, Kwangyeol-
dc.date.accessioned2024-01-19T16:00:22Z-
dc.date.available2024-01-19T16:00:22Z-
dc.date.created2021-09-02-
dc.date.issued2021-01-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117647-
dc.description.abstractLong-term catalyst stability is essential for the commercialization of hydrogen generation by electrocatalytic water-splitting. Current research, however, mainly focuses on improving electrode activity of the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode of electrolyzers, although the maintenance of long-term performance poses a bigger challenge. To shift the focus of research to the issue of catalyst stability, this review describes the mechanism of HER/OER catalyst degradation based on catalyst dissolution and agglomeration, and summarizes representative catalyst designs for achieving stable catalysts in long-term water electrolysis operation. Additionally, various strategies toward the improvement of HER/OER stability are evaluated, and potential effective guidelines for the design of stable catalysts are suggested.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectOXYGEN EVOLUTION REACTION-
dc.subjectALKALINE HYDROGEN EVOLUTION-
dc.subjectRENEWABLE ENERGY-SOURCES-
dc.subjectHIGHLY-EFFICIENT-
dc.subjectIN-SITU-
dc.subjectBIFUNCTIONAL ELECTROCATALYSTS-
dc.subjectOXIDE NANOPARTICLES-
dc.subjectDURABLE ELECTROCATALYST-
dc.subjectALLOY NANOPARTICLES-
dc.subjectASSISTED SYNTHESIS-
dc.titleNanocatalyst Design for Long-Term Operation of Proton/Anion Exchange Membrane Water Electrolysis-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202003188-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.11, no.4-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume11-
dc.citation.number4-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000598292000001-
dc.identifier.scopusid2-s2.0-85097502372-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeReview-
dc.subject.keywordPlusOXYGEN EVOLUTION REACTION-
dc.subject.keywordPlusALKALINE HYDROGEN EVOLUTION-
dc.subject.keywordPlusRENEWABLE ENERGY-SOURCES-
dc.subject.keywordPlusHIGHLY-EFFICIENT-
dc.subject.keywordPlusIN-SITU-
dc.subject.keywordPlusBIFUNCTIONAL ELECTROCATALYSTS-
dc.subject.keywordPlusOXIDE NANOPARTICLES-
dc.subject.keywordPlusDURABLE ELECTROCATALYST-
dc.subject.keywordPlusALLOY NANOPARTICLES-
dc.subject.keywordPlusASSISTED SYNTHESIS-
dc.subject.keywordAuthorhydrogen evolution reaction-
dc.subject.keywordAuthorlong&#8208-
dc.subject.keywordAuthorterm stability-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthorwater electrolysis-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE