Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Junseok | - |
dc.contributor.author | Kim, Joonhwan | - |
dc.contributor.author | Yoon, Kyung Joong | - |
dc.contributor.author | Son, Ji-Won | - |
dc.contributor.author | Lee, Jong-Ho | - |
dc.contributor.author | Lee, Jong-Heun | - |
dc.contributor.author | Lee, Hae-Weon | - |
dc.contributor.author | Ji, Ho-Il | - |
dc.date.accessioned | 2024-01-19T16:00:55Z | - |
dc.date.available | 2024-01-19T16:00:55Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2020-12-15 | - |
dc.identifier.issn | 0925-8388 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117678 | - |
dc.description.abstract | Solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ)/gadolinium-doped ceria (GDC) bilayer electrolytes has been considered one of representative types of high-performance intermediate-temperature SOFCs, because it enables to apply highly active cathode materials. However, the processing of fully dense bilayer electrolytes with good interfacial structure, which are essential for high-performance and secure operation, has not yet been successfully achieved. Here, we present a simple and costeffective roll calendering process for fabrication of SOFCs with YSZ/GDC bilayer electrolytes. From understanding on the correlation between processing conditions of roll calendering and microstructure of bilayer electrolytes, the roll calendering process is optimized, and in turn, the bilayer electrolytes with overall thickness of 8.0 mm, relative density above 98%, and enhanced interfacial connectivity of 69% is obtained by co-sintering at reduced temperature of 1250 degrees C. This excellent structural enhancement in comparison with conventional uniaxial pressing process is explained by a shear force applied during roll calendering process, which presumably facilitates particle rearrangement within bilayer electrolytes. The optimized cell yields promising electrochemical performance of 1.45 W/cm(2) at current density of 2 A/cm(2) and low ohmic resistance of 0.046 U cm(2) at 800 degrees C. (C) 2020 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE SA | - |
dc.subject | TEMPERATURE | - |
dc.subject | PERFORMANCE | - |
dc.subject | DEGRADATION | - |
dc.subject | FABRICATION | - |
dc.subject | COMPACTION | - |
dc.subject | STABILITY | - |
dc.subject | STRATEGY | - |
dc.title | Solid oxide fuel cells with zirconia/ceria bilayer electrolytes via roll calendering process | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jallcom.2020.156318 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | JOURNAL OF ALLOYS AND COMPOUNDS, v.846 | - |
dc.citation.title | JOURNAL OF ALLOYS AND COMPOUNDS | - |
dc.citation.volume | 846 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000568826500011 | - |
dc.identifier.scopusid | 2-s2.0-85088819550 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | TEMPERATURE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | DEGRADATION | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | COMPACTION | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordPlus | STRATEGY | - |
dc.subject.keywordAuthor | Roll calendering | - |
dc.subject.keywordAuthor | Bilayer electrolytes | - |
dc.subject.keywordAuthor | Shear stress | - |
dc.subject.keywordAuthor | Solid oxide fuel cells | - |
dc.subject.keywordAuthor | Tape lamination | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.