Full metadata record

DC Field Value Language
dc.contributor.authorPark, Hyeokjun-
dc.contributor.authorLim, Hyung-Kyu-
dc.contributor.authorOh, Si Hyoung-
dc.contributor.authorPark, Jooha-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorKang, Kisuk-
dc.date.accessioned2024-01-19T16:01:04Z-
dc.date.available2024-01-19T16:01:04Z-
dc.date.created2021-09-02-
dc.date.issued2020-12-11-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117687-
dc.description.abstractMagnesium (Mg) rechargeable batteries are one of the promising high-energy post-lithium battery chemistries exploiting the multivalent charge carrier. However, the use of magnesium metal has been challenging due to the formation of the ion-blocking passivation layer on magnesium metal in most organic electrolytes. Herein, we propose a new strategy to transform the passivating film into a Mg2+-conductive interphase via simple chemisorption of sulfur dioxide molecules on magnesium metal. The facile chemical tuning converts the magnesium oxide-based passivation layer into a magnesium sulfate-like phase, which greatly enhances the charge-transfer capability of multivalent Mg2+ ions. The reduced surface resistance of the magnesium metal results in efficient magnesium stripping/deposition reactions even under conventional ether-based electrolytes. Theoretical calculations support that the facile ionic conduction is attributed to the relatively low Mg2+ dissociation and migration energies in the tailored interphases. Furthermore, we elucidate the degradation mechanism of magnesium electrodes by combining various experimental analyses with computational calculations.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectWIDE ELECTROCHEMICAL WINDOWS-
dc.subjectELECTROLYTE-SOLUTIONS-
dc.subjectSO2-
dc.subjectADSORPTION-
dc.subjectADDITIVES-
dc.subjectBEHAVIOR-
dc.subjectSYSTEMS-
dc.subjectCO2-
dc.titleTailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.0c02102-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS ENERGY LETTERS, v.5, no.12, pp.3733 - 3740-
dc.citation.titleACS ENERGY LETTERS-
dc.citation.volume5-
dc.citation.number12-
dc.citation.startPage3733-
dc.citation.endPage3740-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000599605500010-
dc.identifier.scopusid2-s2.0-85096721520-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusWIDE ELECTROCHEMICAL WINDOWS-
dc.subject.keywordPlusELECTROLYTE-SOLUTIONS-
dc.subject.keywordPlusSO2-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusADDITIVES-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCO2-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE