Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwak, In Hye | - |
dc.contributor.author | Debela, Tekalign Terfa | - |
dc.contributor.author | Kwon, Ik Seon | - |
dc.contributor.author | Seo, Jaemin | - |
dc.contributor.author | Yoo, Seung Jo | - |
dc.contributor.author | Kim, Jin-Gyu | - |
dc.contributor.author | Ahn, Jae-Pyoung | - |
dc.contributor.author | Park, Jeunghee | - |
dc.contributor.author | Kang, Hong Seok | - |
dc.date.accessioned | 2024-01-19T16:01:31Z | - |
dc.date.available | 2024-01-19T16:01:31Z | - |
dc.date.created | 2022-01-25 | - |
dc.date.issued | 2020-12 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117715 | - |
dc.description.abstract | Two-dimensional transition metal dichalcogenides have recently attracted much attention as excellent electrocatalysts for the hydrogen evolution reaction (HER). Herein, Re1-xMoxS2 alloy nanosheets in the entire composition range were synthesized using a hydrothermal reaction. High-resolution scanning transmission electron microscopy revealed anisotropic atomic distribution of the alloy phase, in which the Re and Mo atoms tend to segregate along a crystallographic axis. The phase transition occurs from the triclinic phase (1T '') ReS2 to the monoclinic phase (1T ') MoS2 at 50% Mo. Re0.5Mo0.5S2 exhibited the highest electrocatalytic HER activity, which was characterized by a current density of 10 mA cm(-2) at an overpotential of 98 mV (vs. RHE) and a Tafel slope of 54 mV dec(-1) in 0.5 M H2SO4. Extensive calculations using spin-polarized density functional theory showed that the most energetically stable configuration consists of separated MoS2 and ReS2 domains along the b axis, and the 1T '' -> 1T ' phase transition at 50% Mo, which agrees with the experimental results. The Gibbs free energy along the HER pathway indicates that the best performance at Mo 50% is due to the formation of S-H or Mo-H (at S vacancies) on the MoS2 domain. | - |
dc.language | English | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Anisotropic alloying of Re1-xMoxS2 nanosheets to boost the electrochemical hydrogen evolution reaction | - |
dc.type | Article | - |
dc.identifier.doi | 10.1039/d0ta09299a | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | JOURNAL OF MATERIALS CHEMISTRY A, v.8, no.47, pp.25131 - 25141 | - |
dc.citation.title | JOURNAL OF MATERIALS CHEMISTRY A | - |
dc.citation.volume | 8 | - |
dc.citation.number | 47 | - |
dc.citation.startPage | 25131 | - |
dc.citation.endPage | 25141 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000599249300021 | - |
dc.identifier.scopusid | 2-s2.0-85098460619 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | ACTIVE EDGE SITES | - |
dc.subject.keywordPlus | FEW-LAYER RES2 | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | EFFICIENT | - |
dc.subject.keywordPlus | MOS2 | - |
dc.subject.keywordPlus | ELECTROCATALYST | - |
dc.subject.keywordPlus | IDENTIFICATION | - |
dc.subject.keywordPlus | MONOLAYER | - |
dc.subject.keywordPlus | SULFUR | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.