Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jong Min-
dc.contributor.authorKim, Joo-Hyung-
dc.contributor.authorKim, Jun-
dc.contributor.authorLim, Youngjoon-
dc.contributor.authorKim, Yongmin-
dc.contributor.authorAlam, Afroz-
dc.contributor.authorLee, Jaeseung-
dc.contributor.authorJu, Hyunchul-
dc.contributor.authorHam, Hyung Chul-
dc.contributor.authorKim, Jin Young-
dc.date.accessioned2024-01-19T16:01:52Z-
dc.date.available2024-01-19T16:01:52Z-
dc.date.created2021-10-21-
dc.date.issued2020-12-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117734-
dc.description.abstractA new direction for developing electrocatalysts for hydrogen fuel cell systems has emerged, based on the fabrication of 3D architectures. These new architectures include extended Pt surface building blocks, the strategic use of void spaces, and deliberate network connectivity along with tortuosity, as design components. Various strategies for synthesis now enable the functional and structural engineering of these electrocatalysts with appropriate electronic, ionic, and electrochemical features. The new architectures provide efficient mass transport and large electrochemically active areas. To date, although there are few examples of fully functioning hydrogen fuel cell devices, these 3D electrocatalysts have the potential to achieve optimal cell performance and durability, exceeding conventional Pt powder (i.e., Pt/C) electrocatalysts. This progress report highlights the various 3D architectures proposed for Pt electrocatalysts, advances made in the fabrication of these structures, and the remaining technical challenges. Attempts to develop design rules for 3D architectures and modeling, provide insights into their achievable and potential performance. Perspectives on future developments of new multiscale designs are also discussed along with future study directions.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleSynergetic Structural Transformation of Pt Electrocatalyst into Advanced 3D Architectures for Hydrogen Fuel Cells-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202002210-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED MATERIALS, v.32, no.51-
dc.citation.titleADVANCED MATERIALS-
dc.citation.volume32-
dc.citation.number51-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000573222300001-
dc.identifier.scopusid2-s2.0-85091686481-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusDIRECT NUMERICAL-SIMULATION-
dc.subject.keywordPlusHIGHLY-ACTIVE ELECTROCATALYSTS-
dc.subject.keywordPlusTHIN-FILM ELECTROCATALYSTS-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusPT-NI AEROGELS-
dc.subject.keywordPlusGALVANIC REPLACEMENT-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusNSTF ELECTRODES-
dc.subject.keywordPlusPARTICLE-SIZE-
dc.subject.keywordAuthor3D architectures-
dc.subject.keywordAuthorfuel cells-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.subject.keywordAuthorPt electrocatalysts-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE