Full metadata record

DC Field Value Language
dc.contributor.authorHuang, Zhifeng-
dc.contributor.authorLee, Jongwook-
dc.contributor.authorHenkensmeier, Dirk-
dc.contributor.authorHempelmann, Rolf-
dc.contributor.authorKim, Sangwon-
dc.contributor.authorChen, Ruiyong-
dc.date.accessioned2024-01-19T16:02:15Z-
dc.date.available2024-01-19T16:02:15Z-
dc.date.created2021-09-02-
dc.date.issued2020-12-
dc.identifier.issn0013-4651-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117759-
dc.description.abstractWater soluble organic redox-species have been studied in redox flow batteries as promising alternatives to overcome the limitation of current vanadium chemistry such as low energy density and high cost. Herein, a comparative physicochemical and electrochemical study of several structurally similar quinones in different molalities of imidazolium-based aqueous electrolytes highlights the importance of the molecular structure of organic solutes and their coordination with the imidazolium cations in electrolytes. A quinone derivative of 2-methoxyl-hydroquinone with a record solubility of 7.9 M at room temperature is obtained in the aqueous imidazolium-based supporting electrolyte. This is close to a maximum value of 8.13 M in its molten state, suggesting a new approach to dissolving organic-active materials. In addition, strong coordination imposes a significant effect on the chemical/electrochemical stability and redox potential of the organic quinones. The reaction kinetics and cycling performance of the 2-methoxyl-hydroquinone as catholyte in a redox flow battery have been investigated by pairing it with a vanadium anolyte (V3+/V2+ redox pair), showing a high cycling efficiency and structural stability. (c) 2020 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.-
dc.languageEnglish-
dc.publisherELECTROCHEMICAL SOC INC-
dc.titleEffect of Molecular Structure and Coordinating Ions on the Solubility and Electrochemical Behavior of Quinone Derivatives for Aqueous Redox Flow Batteries-
dc.typeArticle-
dc.identifier.doi10.1149/1945-7111/abc90c-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF THE ELECTROCHEMICAL SOCIETY, v.167, no.16-
dc.citation.titleJOURNAL OF THE ELECTROCHEMICAL SOCIETY-
dc.citation.volume167-
dc.citation.number16-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000593480600001-
dc.identifier.scopusid2-s2.0-85096897273-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRICAL ENERGY-STORAGE-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusCELL-
dc.subject.keywordPlusVOLTAMMETRY-
dc.subject.keywordPlusCATHOLYTE-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusROLES-
dc.subject.keywordPlusPH-
dc.subject.keywordAuthorflow battery-
dc.subject.keywordAuthormembrane-
dc.subject.keywordAuthorquinones-
dc.subject.keywordAuthorionic liquids-
dc.subject.keywordAuthorenergy storage-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE