Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Junhyuk-
dc.contributor.authorKim, Keun Tae-
dc.contributor.authorJeong, Ji Hyeok-
dc.contributor.authorKim, Laehyun-
dc.contributor.authorLee, Song Joo-
dc.contributor.authorKim, Hyungmin-
dc.date.accessioned2024-01-19T16:02:19Z-
dc.date.available2024-01-19T16:02:19Z-
dc.date.created2021-09-02-
dc.date.issued2020-12-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117763-
dc.description.abstractThis study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.-
dc.languageEnglish-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleDeveloping a Motor Imagery-Based Real-Time Asynchronous Hybrid BCI Controller for a Lower-Limb Exoskeleton-
dc.typeArticle-
dc.identifier.doi10.3390/s20247309-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSensors, v.20, no.24-
dc.citation.titleSensors-
dc.citation.volume20-
dc.citation.number24-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000603307100001-
dc.identifier.scopusid2-s2.0-85098185342-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusSINGLE-TRIAL EEG-
dc.subject.keywordPlusBRAIN-
dc.subject.keywordPlusINTERFACES-
dc.subject.keywordPlusOPERATION-
dc.subject.keywordPlusSCIENCE-
dc.subject.keywordAuthorhybrid BCI-
dc.subject.keywordAuthorEEG-
dc.subject.keywordAuthormotor imagery-
dc.subject.keywordAuthorFBCSP-
dc.subject.keywordAuthorlower-limb exoskeleton-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE