Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jang, Jihye | - |
dc.contributor.author | Kim, Hyeongwoo | - |
dc.contributor.author | Lim, Hyojun | - |
dc.contributor.author | Kim, Ki Jae | - |
dc.contributor.author | Jung, Hun-Gi | - |
dc.contributor.author | Kim, Sang-Ok | - |
dc.contributor.author | Choi, Wonchang | - |
dc.date.accessioned | 2024-01-19T16:02:31Z | - |
dc.date.available | 2024-01-19T16:02:31Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2020-12 | - |
dc.identifier.issn | 1385-8947 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117776 | - |
dc.description.abstract | High-capacity silicon anode materials have attracted significant attention for application in lithium-ion batteries (LIBs), even though the drastic volumetric changes of the silicon materials result in rapid capacity degradation. Here, an Si-embedded silicon oxycarbide (SiOC) was synthesized using a selective assembly-based method. We utilized cetrimonium bromide (CTAB), a cationic surfactant, to facilitate interfacial interactions between Si nanoparticles and silicone oil using the hydrophobic property of the CTAB tail groups. The synthesis method includes a simple pyrolysis process at 900 degrees C followed by the surface modification of Si nanoparticles with the CTAB surfactant to obtain a SiOC matrix with homogeneously embedded Si particles. The final composite exhibits improved electrochemical properties as a LIB anode material and displays a stable cycle life (1312 mAh.g(-1) for the 100th cycle at 0.5 A.g(-1)) in addition to enhanced power characteristics (634 mAh.g(-1) at the high current density of 5 A.g(-1)). The SiOC matrix effectively suppressed the volumetric change of the inner Si particles in addition to enhancing the conductivity due to the free carbon in SiOC materials. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Surfactant-based selective assembly approach for Si-embedded silicon oxycarbide composite materials in lithium-ion batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cej.2020.126091 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Chemical Engineering Journal, v.401 | - |
dc.citation.title | Chemical Engineering Journal | - |
dc.citation.volume | 401 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000569903800003 | - |
dc.identifier.scopusid | 2-s2.0-85087408131 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HIGH-PERFORMANCE ANODE | - |
dc.subject.keywordPlus | LONG-CYCLE | - |
dc.subject.keywordPlus | HIGH-CAPACITY | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | NANOCOMPOSITES | - |
dc.subject.keywordPlus | MECHANISM | - |
dc.subject.keywordPlus | STRATEGY | - |
dc.subject.keywordPlus | STORAGE | - |
dc.subject.keywordPlus | OIL | - |
dc.subject.keywordAuthor | Surface modification | - |
dc.subject.keywordAuthor | Surfactants | - |
dc.subject.keywordAuthor | Lithium-ion batteries | - |
dc.subject.keywordAuthor | Silicon anode | - |
dc.subject.keywordAuthor | Silicon oxycarbide | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.