Full metadata record

DC Field Value Language
dc.contributor.authorJang, Jihye-
dc.contributor.authorKim, Hyeongwoo-
dc.contributor.authorLim, Hyojun-
dc.contributor.authorKim, Ki Jae-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorKim, Sang-Ok-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2024-01-19T16:02:31Z-
dc.date.available2024-01-19T16:02:31Z-
dc.date.created2021-09-02-
dc.date.issued2020-12-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117776-
dc.description.abstractHigh-capacity silicon anode materials have attracted significant attention for application in lithium-ion batteries (LIBs), even though the drastic volumetric changes of the silicon materials result in rapid capacity degradation. Here, an Si-embedded silicon oxycarbide (SiOC) was synthesized using a selective assembly-based method. We utilized cetrimonium bromide (CTAB), a cationic surfactant, to facilitate interfacial interactions between Si nanoparticles and silicone oil using the hydrophobic property of the CTAB tail groups. The synthesis method includes a simple pyrolysis process at 900 degrees C followed by the surface modification of Si nanoparticles with the CTAB surfactant to obtain a SiOC matrix with homogeneously embedded Si particles. The final composite exhibits improved electrochemical properties as a LIB anode material and displays a stable cycle life (1312 mAh.g(-1) for the 100th cycle at 0.5 A.g(-1)) in addition to enhanced power characteristics (634 mAh.g(-1) at the high current density of 5 A.g(-1)). The SiOC matrix effectively suppressed the volumetric change of the inner Si particles in addition to enhancing the conductivity due to the free carbon in SiOC materials.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleSurfactant-based selective assembly approach for Si-embedded silicon oxycarbide composite materials in lithium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2020.126091-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.401-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume401-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000569903800003-
dc.identifier.scopusid2-s2.0-85087408131-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusLONG-CYCLE-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusSTRATEGY-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusOIL-
dc.subject.keywordAuthorSurface modification-
dc.subject.keywordAuthorSurfactants-
dc.subject.keywordAuthorLithium-ion batteries-
dc.subject.keywordAuthorSilicon anode-
dc.subject.keywordAuthorSilicon oxycarbide-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE