Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Chang Seob | - |
dc.contributor.author | Jung, Jeawoo | - |
dc.contributor.author | Jang, Jong Hyun | - |
dc.contributor.author | Kim, Hyoung-Juhn | - |
dc.contributor.author | Park, Hyun S. | - |
dc.contributor.author | Kang, Jeong Won | - |
dc.contributor.author | Na, Youngseung | - |
dc.contributor.author | Park, Hee-Young | - |
dc.date.accessioned | 2024-01-19T16:03:30Z | - |
dc.date.available | 2024-01-19T16:03:30Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2020-11-20 | - |
dc.identifier.issn | 0360-3199 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117836 | - |
dc.description.abstract | One of the most significant factors affecting the performance of a proton exchange membrane fuel cell is the flow path for the passage of air and water, which is responsible for oxygen dispersion. A three-dimensional fine mesh, with optimized flow paths, exhibits the best performance in commercialized fuel cell electric vehicles, but the manufacturing cost is significantly high. To achieve high performance at a lower cost, the possibility of using a combination of commercially available screen meshes was investigated. The overlapped screen meshes should provide improved mass transport similar to a 3-D fine mesh. By using an optimized combination of screen meshes (200 and 100 mesh) and gasket thickness (150 mu m thinner than the mesh flow field), an improvement in oxygen mass transport was achieved. The suggested combination shows a lower oxygen gain (0.030 V) than a single mesh (0.050 V) and a conventional single serpentine flow field (0.150 V). (C) 2020 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. | - |
dc.language | English | - |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | - |
dc.subject | CLAMPING PRESSURE | - |
dc.subject | PERFORMANCE | - |
dc.subject | RESISTANCE | - |
dc.subject | VEHICLE | - |
dc.subject | PROGRESS | - |
dc.subject | LAYER | - |
dc.subject | FLOW | - |
dc.title | Micro fluidic structure selection of metal mesh combinations in proton exchange membrane fuel cells for air supply enhancement | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.ijhydene.2020.05.154 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.45, no.57, pp.32808 - 32815 | - |
dc.citation.title | INTERNATIONAL JOURNAL OF HYDROGEN ENERGY | - |
dc.citation.volume | 45 | - |
dc.citation.number | 57 | - |
dc.citation.startPage | 32808 | - |
dc.citation.endPage | 32815 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000588285000007 | - |
dc.identifier.scopusid | 2-s2.0-85088961852 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Electrochemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CLAMPING PRESSURE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | RESISTANCE | - |
dc.subject.keywordPlus | VEHICLE | - |
dc.subject.keywordPlus | PROGRESS | - |
dc.subject.keywordPlus | LAYER | - |
dc.subject.keywordPlus | FLOW | - |
dc.subject.keywordAuthor | Polymer electrolyte membrane fuel cell | - |
dc.subject.keywordAuthor | Flow field | - |
dc.subject.keywordAuthor | Mesh | - |
dc.subject.keywordAuthor | Mass transport | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.