Full metadata record

DC Field Value Language
dc.contributor.authorKim, Chang Seob-
dc.contributor.authorJung, Jeawoo-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorPark, Hyun S.-
dc.contributor.authorKang, Jeong Won-
dc.contributor.authorNa, Youngseung-
dc.contributor.authorPark, Hee-Young-
dc.date.accessioned2024-01-19T16:03:30Z-
dc.date.available2024-01-19T16:03:30Z-
dc.date.created2021-09-02-
dc.date.issued2020-11-20-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117836-
dc.description.abstractOne of the most significant factors affecting the performance of a proton exchange membrane fuel cell is the flow path for the passage of air and water, which is responsible for oxygen dispersion. A three-dimensional fine mesh, with optimized flow paths, exhibits the best performance in commercialized fuel cell electric vehicles, but the manufacturing cost is significantly high. To achieve high performance at a lower cost, the possibility of using a combination of commercially available screen meshes was investigated. The overlapped screen meshes should provide improved mass transport similar to a 3-D fine mesh. By using an optimized combination of screen meshes (200 and 100 mesh) and gasket thickness (150 mu m thinner than the mesh flow field), an improvement in oxygen mass transport was achieved. The suggested combination shows a lower oxygen gain (0.030 V) than a single mesh (0.050 V) and a conventional single serpentine flow field (0.150 V). (C) 2020 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectCLAMPING PRESSURE-
dc.subjectPERFORMANCE-
dc.subjectRESISTANCE-
dc.subjectVEHICLE-
dc.subjectPROGRESS-
dc.subjectLAYER-
dc.subjectFLOW-
dc.titleMicro fluidic structure selection of metal mesh combinations in proton exchange membrane fuel cells for air supply enhancement-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2020.05.154-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.45, no.57, pp.32808 - 32815-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume45-
dc.citation.number57-
dc.citation.startPage32808-
dc.citation.endPage32815-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000588285000007-
dc.identifier.scopusid2-s2.0-85088961852-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusCLAMPING PRESSURE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusVEHICLE-
dc.subject.keywordPlusPROGRESS-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusFLOW-
dc.subject.keywordAuthorPolymer electrolyte membrane fuel cell-
dc.subject.keywordAuthorFlow field-
dc.subject.keywordAuthorMesh-
dc.subject.keywordAuthorMass transport-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE