Full metadata record

DC Field Value Language
dc.contributor.authorKang, Gil-Seong-
dc.contributor.authorJang, Jue-Hyuk-
dc.contributor.authorSon, Su-Young-
dc.contributor.authorLee, Cheol-Ho-
dc.contributor.authorLee, Youn-Ki-
dc.contributor.authorLee, Doh C.-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorLee, Sungho-
dc.contributor.authorJoh, Han-Ik-
dc.date.accessioned2024-01-19T16:03:42Z-
dc.date.available2024-01-19T16:03:42Z-
dc.date.created2021-09-02-
dc.date.issued2020-11-14-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117849-
dc.description.abstractSingle-atom catalysts have been considered as representative non-noble metal catalysts for replacing the platinum catalyst. Fundamentally, the dispersion of metal atoms on a carbon support with limited surface area results in extremely low loading of the active metal, leading to a thick electrode and low volumetric energy density. In this study, we present a facile strategy for increasing the active metal densities on the M-N-C catalyst through the use of dual active sites such as Fe-N-x and nanosized Fe3C that have different reaction pathways involving 4 and 2 + 2 (or 2 x 2) electrons, respectively. The dual active sites were realized by the addition of Zn that affects the physical shielding of Fe and energy bypass, leading to the formation of single-atomic Fe-N-x species and nanosized Fe3C with similar to 2 nm. Our catalyst exhibits superior oxygen reduction reaction activity to that of the commercial 20 wt% Pt/C catalysts both in half cell (onset potential, 0.95 V; half-wave potential, 0.9 V) and single cell (maximum power density, 367 mW cm(-2)). Therefore, we expect that our facile strategy would open an avenue for the rational design and synthesis of highly loaded active Fe-based catalysts.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectN-C CATALYST-
dc.subjectDOPED GRAPHENE-
dc.subjectNONPRECIOUS ELECTROCATALYSTS-
dc.subjectN/C ELECTROCATALYSTS-
dc.subjectCARBON-
dc.subjectIRON-
dc.subjectCOMPOSITE-
dc.subjectDENSITY-
dc.subjectPHOSPHORUS-
dc.subjectMECHANISM-
dc.titleFe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction-
dc.typeArticle-
dc.identifier.doi10.1039/d0ta07748h-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.8, no.42, pp.22379 - 22388-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume8-
dc.citation.number42-
dc.citation.startPage22379-
dc.citation.endPage22388-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000585127100042-
dc.identifier.scopusid2-s2.0-85095685721-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusN-C CATALYST-
dc.subject.keywordPlusDOPED GRAPHENE-
dc.subject.keywordPlusNONPRECIOUS ELECTROCATALYSTS-
dc.subject.keywordPlusN/C ELECTROCATALYSTS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusIRON-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusPHOSPHORUS-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.subject.keywordAuthorFe-N based catalyst-
dc.subject.keywordAuthorfuel cell-
dc.subject.keywordAuthordual active sites-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE