Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jae Hun-
dc.contributor.authorIm, Kyungmin-
dc.contributor.authorHan, Sangjin-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorKim, Jinsoo-
dc.contributor.authorKim, Jong Hak-
dc.date.accessioned2024-01-19T16:03:51Z-
dc.date.available2024-01-19T16:03:51Z-
dc.date.created2022-01-10-
dc.date.issued2020-11-01-
dc.identifier.issn1383-5866-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117858-
dc.description.abstractWe reported the use of high-performance, CO2-accelerated mixed matrix membranes (MMMs) consisting of sub-micron porous magnesium oxide (MgO) fillers and an amphiphilic polymer matrix. Bimodal-porous, hollow MgO (bh-MgO) spheres were synthesized through a one-step spray pyrolysis and precipitation method. The synthesized bh-MgO spheres were introduced into poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM), forming MMMs for CO2/N-2 separation. The amphiphilic property of PVC-g-POEM ensured an intimate contact between the bh-MgO filler and polymer matrix with the encapsulation of bh-MgO spheres. The bimodal porous and hollow structure of bh-MgO decreased the gas diffusion resistance in the membranes. Moreover, specific interactions between the surfaces of the bh-MgO and CO2 molecules enhanced the CO2 solubility and accelerate the CO2 molecules more than the N-2 molecules. The dual-functional bh-MgO sphere enhanced the CO2 permeability through physical and chemical mechanisms, simultaneously. The best gas separation performance was obtained in the MMM with 10 wt% bh-MgO fillers, which demonstrated a CO2 permeability of 179.2 Barrer and 42.6 of CO2/N-2 selectivity.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectGAS SEPARATION PERFORMANCE-
dc.subjectSILICA NANOPARTICLES-
dc.subjectSURFACE MODIFICATION-
dc.subjectCO2/N-2 SEPARATION-
dc.subjectCARBON NANOTUBES-
dc.subjectOXIDE-
dc.subjectABSORPTION-
dc.subjectZEOLITE-
dc.subjectADSORPTION-
dc.subjectINTERFACE-
dc.titleBimodal-porous hollow MgO sphere embedded mixed matrix membranes for CO2 capture-
dc.typeArticle-
dc.identifier.doi10.1016/j.seppur.2020.117065-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSEPARATION AND PURIFICATION TECHNOLOGY, v.250-
dc.citation.titleSEPARATION AND PURIFICATION TECHNOLOGY-
dc.citation.volume250-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000552061600010-
dc.identifier.scopusid2-s2.0-85085163780-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAS SEPARATION PERFORMANCE-
dc.subject.keywordPlusSILICA NANOPARTICLES-
dc.subject.keywordPlusSURFACE MODIFICATION-
dc.subject.keywordPlusCO2/N-2 SEPARATION-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusZEOLITE-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordAuthorGas separation-
dc.subject.keywordAuthorMixed matrix membrane-
dc.subject.keywordAuthorMagnesium oxide-
dc.subject.keywordAuthorInorganic filler-
dc.subject.keywordAuthorCO2-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE