Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Jae Hun | - |
dc.contributor.author | Im, Kyungmin | - |
dc.contributor.author | Han, Sangjin | - |
dc.contributor.author | Yoo, Sung Jong | - |
dc.contributor.author | Kim, Jinsoo | - |
dc.contributor.author | Kim, Jong Hak | - |
dc.date.accessioned | 2024-01-19T16:03:51Z | - |
dc.date.available | 2024-01-19T16:03:51Z | - |
dc.date.created | 2022-01-10 | - |
dc.date.issued | 2020-11-01 | - |
dc.identifier.issn | 1383-5866 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117858 | - |
dc.description.abstract | We reported the use of high-performance, CO2-accelerated mixed matrix membranes (MMMs) consisting of sub-micron porous magnesium oxide (MgO) fillers and an amphiphilic polymer matrix. Bimodal-porous, hollow MgO (bh-MgO) spheres were synthesized through a one-step spray pyrolysis and precipitation method. The synthesized bh-MgO spheres were introduced into poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM), forming MMMs for CO2/N-2 separation. The amphiphilic property of PVC-g-POEM ensured an intimate contact between the bh-MgO filler and polymer matrix with the encapsulation of bh-MgO spheres. The bimodal porous and hollow structure of bh-MgO decreased the gas diffusion resistance in the membranes. Moreover, specific interactions between the surfaces of the bh-MgO and CO2 molecules enhanced the CO2 solubility and accelerate the CO2 molecules more than the N-2 molecules. The dual-functional bh-MgO sphere enhanced the CO2 permeability through physical and chemical mechanisms, simultaneously. The best gas separation performance was obtained in the MMM with 10 wt% bh-MgO fillers, which demonstrated a CO2 permeability of 179.2 Barrer and 42.6 of CO2/N-2 selectivity. | - |
dc.language | English | - |
dc.publisher | ELSEVIER | - |
dc.subject | GAS SEPARATION PERFORMANCE | - |
dc.subject | SILICA NANOPARTICLES | - |
dc.subject | SURFACE MODIFICATION | - |
dc.subject | CO2/N-2 SEPARATION | - |
dc.subject | CARBON NANOTUBES | - |
dc.subject | OXIDE | - |
dc.subject | ABSORPTION | - |
dc.subject | ZEOLITE | - |
dc.subject | ADSORPTION | - |
dc.subject | INTERFACE | - |
dc.title | Bimodal-porous hollow MgO sphere embedded mixed matrix membranes for CO2 capture | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.seppur.2020.117065 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | SEPARATION AND PURIFICATION TECHNOLOGY, v.250 | - |
dc.citation.title | SEPARATION AND PURIFICATION TECHNOLOGY | - |
dc.citation.volume | 250 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000552061600010 | - |
dc.identifier.scopusid | 2-s2.0-85085163780 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | GAS SEPARATION PERFORMANCE | - |
dc.subject.keywordPlus | SILICA NANOPARTICLES | - |
dc.subject.keywordPlus | SURFACE MODIFICATION | - |
dc.subject.keywordPlus | CO2/N-2 SEPARATION | - |
dc.subject.keywordPlus | CARBON NANOTUBES | - |
dc.subject.keywordPlus | OXIDE | - |
dc.subject.keywordPlus | ABSORPTION | - |
dc.subject.keywordPlus | ZEOLITE | - |
dc.subject.keywordPlus | ADSORPTION | - |
dc.subject.keywordPlus | INTERFACE | - |
dc.subject.keywordAuthor | Gas separation | - |
dc.subject.keywordAuthor | Mixed matrix membrane | - |
dc.subject.keywordAuthor | Magnesium oxide | - |
dc.subject.keywordAuthor | Inorganic filler | - |
dc.subject.keywordAuthor | CO2 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.