Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, Jin Gu | - |
dc.contributor.author | Wang, Gang | - |
dc.contributor.author | Kim, Sung-Kon | - |
dc.date.accessioned | 2024-01-19T16:30:32Z | - |
dc.date.available | 2024-01-19T16:30:32Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2020-11 | - |
dc.identifier.issn | 1996-1944 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/117945 | - |
dc.description.abstract | Microscale fiber-based supercapacitors have become increasingly important for the needs of flexible, wearable, and lightweight portable electronics. Fiber electrodes without pre-existing cores enable a wider selection of materials and geometries than is possible through core-containing electrodes. The carbonization of fibrous precursors using an electrically driven route, different from a conventional high-temperature process, is particularly promising for achieving this structure. Here, we present a facile and low-cost process for producing high-performance microfiber supercapacitor electrodes based on carbonaceous materials without cores. Fibrous carbon nanotubes-agarose composite hydrogels, formed by an extrusion process, are converted to a composite fiber consisting of carbon nanotubes (CNTs) surrounded by an amorphous carbon (aC) matrix via Joule heating. When assembled into symmetrical two-electrode cells, the composite fiber (aC-CNTs) supercapacitor electrodes deliver a volumetric capacitance of 5.1 F cm(-3) even at a high current density of 118 mA cm(-3). Based on electrochemical impedance spectroscopy analysis, it is revealed that high electrochemical properties are attributed to fast response kinetics with a characteristic time constant of 2.5 s. The aC-CNTs fiber electrodes exhibit a 94% capacitance retention at 14 mA cm(-3) for at least 10,000 charge-discharge cycles even when deformed (90 degrees bend), which is essentially the same as that (96%) when not deformed. The aC-CNTs fiber electrodes also demonstrate excellent storage performance under mechanical deformation-for example, 1000 bending-straightening cycles. | - |
dc.language | English | - |
dc.publisher | MDPI | - |
dc.subject | MICRO-SUPERCAPACITOR | - |
dc.subject | CARBONIZATION | - |
dc.subject | FABRICATION | - |
dc.subject | SPECTROSCOPY | - |
dc.subject | POLYPYRROLE | - |
dc.subject | CAPACITANCE | - |
dc.subject | STORAGE | - |
dc.title | Joule Heating-Induced Carbon Fibers for Flexible Fiber Supercapacitor Electrodes | - |
dc.type | Article | - |
dc.identifier.doi | 10.3390/ma13225255 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | MATERIALS, v.13, no.22 | - |
dc.citation.title | MATERIALS | - |
dc.citation.volume | 13 | - |
dc.citation.number | 22 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000594204100001 | - |
dc.identifier.scopusid | 2-s2.0-85096426129 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | MICRO-SUPERCAPACITOR | - |
dc.subject.keywordPlus | CARBONIZATION | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | SPECTROSCOPY | - |
dc.subject.keywordPlus | POLYPYRROLE | - |
dc.subject.keywordPlus | CAPACITANCE | - |
dc.subject.keywordPlus | STORAGE | - |
dc.subject.keywordAuthor | supercapacitor | - |
dc.subject.keywordAuthor | fiber electrode | - |
dc.subject.keywordAuthor | Joule heating | - |
dc.subject.keywordAuthor | energy storage | - |
dc.subject.keywordAuthor | wearable device | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.