Full metadata record

DC Field Value Language
dc.contributor.authorKang, Jin Gu-
dc.contributor.authorWang, Gang-
dc.contributor.authorKim, Sung-Kon-
dc.date.accessioned2024-01-19T16:30:32Z-
dc.date.available2024-01-19T16:30:32Z-
dc.date.created2021-09-02-
dc.date.issued2020-11-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117945-
dc.description.abstractMicroscale fiber-based supercapacitors have become increasingly important for the needs of flexible, wearable, and lightweight portable electronics. Fiber electrodes without pre-existing cores enable a wider selection of materials and geometries than is possible through core-containing electrodes. The carbonization of fibrous precursors using an electrically driven route, different from a conventional high-temperature process, is particularly promising for achieving this structure. Here, we present a facile and low-cost process for producing high-performance microfiber supercapacitor electrodes based on carbonaceous materials without cores. Fibrous carbon nanotubes-agarose composite hydrogels, formed by an extrusion process, are converted to a composite fiber consisting of carbon nanotubes (CNTs) surrounded by an amorphous carbon (aC) matrix via Joule heating. When assembled into symmetrical two-electrode cells, the composite fiber (aC-CNTs) supercapacitor electrodes deliver a volumetric capacitance of 5.1 F cm(-3) even at a high current density of 118 mA cm(-3). Based on electrochemical impedance spectroscopy analysis, it is revealed that high electrochemical properties are attributed to fast response kinetics with a characteristic time constant of 2.5 s. The aC-CNTs fiber electrodes exhibit a 94% capacitance retention at 14 mA cm(-3) for at least 10,000 charge-discharge cycles even when deformed (90 degrees bend), which is essentially the same as that (96%) when not deformed. The aC-CNTs fiber electrodes also demonstrate excellent storage performance under mechanical deformation-for example, 1000 bending-straightening cycles.-
dc.languageEnglish-
dc.publisherMDPI-
dc.subjectMICRO-SUPERCAPACITOR-
dc.subjectCARBONIZATION-
dc.subjectFABRICATION-
dc.subjectSPECTROSCOPY-
dc.subjectPOLYPYRROLE-
dc.subjectCAPACITANCE-
dc.subjectSTORAGE-
dc.titleJoule Heating-Induced Carbon Fibers for Flexible Fiber Supercapacitor Electrodes-
dc.typeArticle-
dc.identifier.doi10.3390/ma13225255-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMATERIALS, v.13, no.22-
dc.citation.titleMATERIALS-
dc.citation.volume13-
dc.citation.number22-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000594204100001-
dc.identifier.scopusid2-s2.0-85096426129-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMICRO-SUPERCAPACITOR-
dc.subject.keywordPlusCARBONIZATION-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusPOLYPYRROLE-
dc.subject.keywordPlusCAPACITANCE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorsupercapacitor-
dc.subject.keywordAuthorfiber electrode-
dc.subject.keywordAuthorJoule heating-
dc.subject.keywordAuthorenergy storage-
dc.subject.keywordAuthorwearable device-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE