Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dongyeon-
dc.contributor.authorPark, Kyuhong-
dc.contributor.authorLee, Dong-Joo-
dc.contributor.authorAhn, Yongkil-
dc.date.accessioned2024-01-19T16:30:51Z-
dc.date.available2024-01-19T16:30:51Z-
dc.date.created2021-09-02-
dc.date.issued2020-11-
dc.identifier.issn1567-4223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117964-
dc.description.abstractAs mobile devices have become people's first go-to informational source, they are becoming critical for ecommerce companies in understanding how mobile trading devices influence their businesses. This study involves a collaboration with a nationwide financial services company in Korea to examine the role of mobile attention in predicting mobile stock trading system discontinuance. Employing XG-Boost and an artificial neural network, we analyze the complete transaction history, as well as the usage and login patterns data from 2017 to 2018 for 25,822 mobile trading application users. We find that mobile attention has significant statistical power over traditional trade-related metrics such as recency, frequency, and monetary value (RFM) in predicting subsequent mobile trading system discontinuance. Moreover, the new prediction methodology, augmented by incorporating mobile attention into the RFM framework and utilizing up-to-date machine learning techniques, consistently outperforms benchmarks in the empirical literature. Thus, this study sheds new light on the postadoption information system usage literature and furnishes practical guidance to those companies whose business hinges on mobile systems.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titlePredicting mobile trading system discontinuance: The role of attention-
dc.typeArticle-
dc.identifier.doi10.1016/j.elerap.2020.101008-
dc.description.journalClass1-
dc.identifier.bibliographicCitationELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, v.44-
dc.citation.titleELECTRONIC COMMERCE RESEARCH AND APPLICATIONS-
dc.citation.volume44-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000601308600007-
dc.identifier.scopusid2-s2.0-85091798105-
dc.relation.journalWebOfScienceCategoryBusiness-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalResearchAreaBusiness & Economics-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCONTINUANCE INTENTION-
dc.subject.keywordPlusCUSTOMER CHURN-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordPlusINTERNET-
dc.subject.keywordPlusSCREEN-
dc.subject.keywordPlusLIFE-
dc.subject.keywordPlusDETERMINANTS-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusINDUSTRY-
dc.subject.keywordAuthorMobile trading system-
dc.subject.keywordAuthorDiscontinuance-
dc.subject.keywordAuthorAttention-
dc.subject.keywordAuthorField study-
dc.subject.keywordAuthorMachine learning-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE