Full metadata record

DC Field Value Language
dc.contributor.authorBhardwaj, Richa-
dc.contributor.authorBharti, Amardeep-
dc.contributor.authorSingh, Jitendra P.-
dc.contributor.authorChae, Keun H.-
dc.contributor.authorGoyal, Navdeep-
dc.date.accessioned2024-01-19T16:31:37Z-
dc.date.available2024-01-19T16:31:37Z-
dc.date.created2022-01-11-
dc.date.issued2020-10-01-
dc.identifier.issn2516-0230-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118008-
dc.description.abstractIn this paper, we report the existence of defect induced intrinsic room-temperature ferromagnetism (RTFM) in Cu doped ZnO synthesized via a facile sol-gel route. The wurtzite crystal structure of ZnO remained intact up to certain Cu doping concentrations under the present synthesis environment as confirmed by the Rietveld refined X-ray diffraction pattern with the average crystallite size between 35 and 50 nm. Field emission scanning electron microscopy reveals the formation of bullet-like morphologies for pure and Cu doped ZnO. Diffuse reflectance UV-vis shows a decrease in the energy band gap of ZnO on Cu doping. Further, these ZnO samples exhibit strong visible photoluminescence in the region of 500-700 nm associated with defects/vacancies. Near-edge X-ray absorption fine-structure measurements at Zn, Cu L-3,L-2- and O K-edges ruled out the existence of metallic Cu clusters in the synthesized samples (up to 2% doping concentration) supporting the XRD results and providing the evidence of oxygen vacancy mediated ferromagnetism in Cu : ZnO systems. The observed RTFM in Cu doped ZnO nanostructures can be explained by polaronic percolation of bound magnetic polarons formed by oxygen vacancies. Further, extended X-ray absorption fine-structure data at Zn and Cu K-edges provide the local electronic structure information around the absorbing (Zn) atom. The above findings for ZnO nanostructures unwind the cause of magnetism and constitute a significant lift towards realizing spin-related devices and optoelectronic applications.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectROOM-TEMPERATURE FERROMAGNETISM-
dc.subjectX-RAY-SPECTRA-
dc.subjectSOL-GEL-
dc.subjectTHIN-FILMS-
dc.subjectPHOTOCATALYTIC ACTIVITY-
dc.subjectSTRUCTURAL-PROPERTIES-
dc.subjectOPTICAL-PROPERTIES-
dc.subjectNI-
dc.subjectCO-
dc.subjectNANORODS-
dc.titleInfluence of Cu doping on the local electronic and magnetic properties of ZnO nanostructures-
dc.typeArticle-
dc.identifier.doi10.1039/d0na00499e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE ADVANCES, v.2, no.10, pp.4450 - 4463-
dc.citation.titleNANOSCALE ADVANCES-
dc.citation.volume2-
dc.citation.number10-
dc.citation.startPage4450-
dc.citation.endPage4463-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000586010700011-
dc.identifier.scopusid2-s2.0-85092607909-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusROOM-TEMPERATURE FERROMAGNETISM-
dc.subject.keywordPlusX-RAY-SPECTRA-
dc.subject.keywordPlusSOL-GEL-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusPHOTOCATALYTIC ACTIVITY-
dc.subject.keywordPlusSTRUCTURAL-PROPERTIES-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusNANORODS-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE