Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hwang, Heesu | - |
dc.contributor.author | Choi, Sung Min | - |
dc.contributor.author | Oh, Jiwon | - |
dc.contributor.author | Bae, Seung-Muk | - |
dc.contributor.author | Lee, Jong-Ho | - |
dc.contributor.author | Ahn, Jae-Pyeong | - |
dc.contributor.author | Lee, Jeong-O | - |
dc.contributor.author | An, Ki-Seok | - |
dc.contributor.author | Yoon, Young | - |
dc.contributor.author | Hwang, Jin-Ha | - |
dc.date.accessioned | 2024-01-19T16:32:54Z | - |
dc.date.available | 2024-01-19T16:32:54Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2020-09-30 | - |
dc.identifier.issn | 0378-7753 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/118088 | - |
dc.description.abstract | Automated semantic segmentation is applied to the quantification of microstructural features in three-phase composite cathode materials of solid oxide fuel cells (SOFCs), i.e., GDC/LSC/Pore where GDC stands for Gd2O3-doped CeO2 and LSC for La0.6Sr0.4CoO3-delta. Our aim is to eliminate the tedious involvement of human experts and the associated errors. The high volume of image information sets is generated using automatic acquisition systems involving focused-ion beam scanning electron microscopy through a so-called slice-view procedure. Through the integration of semantic segmentation with image processing-assisted stereography tools, the following detailed microstructural features are quantitatively extracted automatically and objectively without any human involvement: size distribution, surface (or equivalently, volume) fraction, lengths of two-phase boundaries, and density of triple-phase boundaries based on two-dimensional images. The extracted two-dimensional information is connected with three-dimensional reconstruction analysis. The implications of semantic segmentation in SOFCs are discussed considering efficient analysis and design of high-performance electrode structures in energy-oriented devices. | - |
dc.language | English | - |
dc.publisher | ELSEVIER | - |
dc.subject | CONVOLUTIONAL NEURAL-NETWORKS | - |
dc.subject | SCANNING-ELECTRON-MICROSCOPY | - |
dc.subject | ANODE | - |
dc.subject | QUANTIFICATION | - |
dc.subject | RECONSTRUCTION | - |
dc.title | Integrated application of semantic segmentation-assisted deep learning to quantitative multi-phased microstructural analysis in composite materials: Case study of cathode composite materials of solid oxide fuel cells | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jpowsour.2020.228458 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | JOURNAL OF POWER SOURCES, v.471 | - |
dc.citation.title | JOURNAL OF POWER SOURCES | - |
dc.citation.volume | 471 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000551511800003 | - |
dc.identifier.scopusid | 2-s2.0-85087112313 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Electrochemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CONVOLUTIONAL NEURAL-NETWORKS | - |
dc.subject.keywordPlus | SCANNING-ELECTRON-MICROSCOPY | - |
dc.subject.keywordPlus | ANODE | - |
dc.subject.keywordPlus | QUANTIFICATION | - |
dc.subject.keywordPlus | RECONSTRUCTION | - |
dc.subject.keywordAuthor | Cathode composite materials | - |
dc.subject.keywordAuthor | Semantic segmentation | - |
dc.subject.keywordAuthor | Microstructure features | - |
dc.subject.keywordAuthor | Solid oxide fuel cells | - |
dc.subject.keywordAuthor | Stereology | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.