Full metadata record

DC Field Value Language
dc.contributor.authorHwang, Heesu-
dc.contributor.authorChoi, Sung Min-
dc.contributor.authorOh, Jiwon-
dc.contributor.authorBae, Seung-Muk-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorAhn, Jae-Pyeong-
dc.contributor.authorLee, Jeong-O-
dc.contributor.authorAn, Ki-Seok-
dc.contributor.authorYoon, Young-
dc.contributor.authorHwang, Jin-Ha-
dc.date.accessioned2024-01-19T16:32:54Z-
dc.date.available2024-01-19T16:32:54Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-30-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118088-
dc.description.abstractAutomated semantic segmentation is applied to the quantification of microstructural features in three-phase composite cathode materials of solid oxide fuel cells (SOFCs), i.e., GDC/LSC/Pore where GDC stands for Gd2O3-doped CeO2 and LSC for La0.6Sr0.4CoO3-delta. Our aim is to eliminate the tedious involvement of human experts and the associated errors. The high volume of image information sets is generated using automatic acquisition systems involving focused-ion beam scanning electron microscopy through a so-called slice-view procedure. Through the integration of semantic segmentation with image processing-assisted stereography tools, the following detailed microstructural features are quantitatively extracted automatically and objectively without any human involvement: size distribution, surface (or equivalently, volume) fraction, lengths of two-phase boundaries, and density of triple-phase boundaries based on two-dimensional images. The extracted two-dimensional information is connected with three-dimensional reconstruction analysis. The implications of semantic segmentation in SOFCs are discussed considering efficient analysis and design of high-performance electrode structures in energy-oriented devices.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectCONVOLUTIONAL NEURAL-NETWORKS-
dc.subjectSCANNING-ELECTRON-MICROSCOPY-
dc.subjectANODE-
dc.subjectQUANTIFICATION-
dc.subjectRECONSTRUCTION-
dc.titleIntegrated application of semantic segmentation-assisted deep learning to quantitative multi-phased microstructural analysis in composite materials: Case study of cathode composite materials of solid oxide fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2020.228458-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.471-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume471-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000551511800003-
dc.identifier.scopusid2-s2.0-85087112313-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCONVOLUTIONAL NEURAL-NETWORKS-
dc.subject.keywordPlusSCANNING-ELECTRON-MICROSCOPY-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusQUANTIFICATION-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordAuthorCathode composite materials-
dc.subject.keywordAuthorSemantic segmentation-
dc.subject.keywordAuthorMicrostructure features-
dc.subject.keywordAuthorSolid oxide fuel cells-
dc.subject.keywordAuthorStereology-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE