Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Yunkyu-
dc.contributor.authorKim, Sung-Soo-
dc.contributor.authorKim, Ji Hoon-
dc.contributor.authorKang, Junhyeok-
dc.contributor.authorChoi, Eunji-
dc.contributor.authorChoi, Seung Eun-
dc.contributor.authorKim, Jeong Pil-
dc.contributor.authorKwon, Ohchan-
dc.contributor.authorKim, Dae Woo-
dc.date.accessioned2024-01-19T16:33:10Z-
dc.date.available2024-01-19T16:33:10Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-22-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118103-
dc.description.abstractThe preparation of carbon materials based hydrogels and their viscoelastic properties are essential for their broad application and scale-up. However, existing studies are mainly focused on graphene derivatives and carbon nanotubes, and the behavior of graphene nanoribbon (GNR), a narrow strip of graphene, remains elusive. Herein, we demonstrate the concentration-driven gelation of oxidized GNR (graphene oxide nanoribbon, GONR) in aqueous solvents. Exfoliated individual GONRs sequentially assemble into strings (similar to 1 mg/mL), (similar to 20 nanoplates mg/mL), and a macroporous scaffold (50 mg/mL) with increasing concentration. The GONR hydrogels exhibit viscoelastic shear-thinning behavior and can be shear-coated to form large-area GONR films on substrates. The entangled and stacked structure of the GONR film contributed to outstanding nanofiltration performance under high pressure, cross-flow, and long-term filtration, while the precise molecular separation with 100% rejection rate was maintained for sub-nanometer molecules.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleGraphene Oxide Nanoribbon Hydrogel: Viscoelastic Behavior and Use as a Molecular Separation Membrane-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.0c05902-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS NANO, v.14, no.9, pp.12195 - 12202-
dc.citation.titleACS NANO-
dc.citation.volume14-
dc.citation.number9-
dc.citation.startPage12195-
dc.citation.endPage12202-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000615915300025-
dc.identifier.scopusid2-s2.0-85091588795-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordAuthorgraphene nanoribbon-
dc.subject.keywordAuthorhydrogel-
dc.subject.keywordAuthorscaffold-
dc.subject.keywordAuthornanofiltration-
dc.subject.keywordAuthormembrane-
dc.subject.keywordAuthorcoating-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE