Full metadata record

DC Field Value Language
dc.contributor.authorChung, Dong Young-
dc.contributor.authorPark, Subin-
dc.contributor.authorLee, Hyeonju-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorChung, Young-Hoon-
dc.contributor.authorYoo, Ji Mun-
dc.contributor.authorAhn, Docheon-
dc.contributor.authorYu, Seung-Ho-
dc.contributor.authorLee, Kug-Seung-
dc.contributor.authorAhmadi, Mandi-
dc.contributor.authorJu, Huanxin-
dc.contributor.authorAbruna, Hector D.-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorMun, Bongjin Simon-
dc.contributor.authorSung, Yung-Eun-
dc.date.accessioned2024-01-19T16:33:34Z-
dc.date.available2024-01-19T16:33:34Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-11-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118127-
dc.description.abstractDespite breakthroughs in the activity of electrocatalysts for the oxygen reduction reaction (ORR), the development of nanoscale ORR electrocatalysts is still hindered by their instability. Here, to bridge the functional link between activity and stability, well-controlled Au@Pt (core@shell) nanoparticles are investigated. In situ monitoring of atomic dissolution and physicochemical analysis in conjunction with theoretical calculations reveal that the atomic-level stability of Au@Pt nanoparticle is attributed to the low surface coverage of OH and oxide on Pt, balancing between strain and ligand effect of Au at the interface. Considering the relationships in activity-stability-oxophilicity, the functional links between activity and stability in the ORR are discussed, and the regulation of oxophilicity is suggested as a guideline for designing highly active and durable electrocatalysts for fuel cell applications.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectOXYGEN REDUCTION REACTION-
dc.subjectCORE-SHELL-
dc.subjectEVOLUTION REACTION-
dc.subjectCATALYTIC-ACTIVITY-
dc.subjectSURFACE-STRUCTURE-
dc.subjectDISSOLUTION-
dc.subjectSTRAIN-
dc.subjectALLOY-
dc.subjectTRENDS-
dc.subjectIDENTIFICATION-
dc.titleActivity-Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.0c01507-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS ENERGY LETTERS, v.5, no.9, pp.2827 - 2834-
dc.citation.titleACS ENERGY LETTERS-
dc.citation.volume5-
dc.citation.number9-
dc.citation.startPage2827-
dc.citation.endPage2834-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000571642600006-
dc.identifier.scopusid2-s2.0-85092271410-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusCORE-SHELL-
dc.subject.keywordPlusEVOLUTION REACTION-
dc.subject.keywordPlusCATALYTIC-ACTIVITY-
dc.subject.keywordPlusSURFACE-STRUCTURE-
dc.subject.keywordPlusDISSOLUTION-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusTRENDS-
dc.subject.keywordPlusIDENTIFICATION-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE